

Click here to ask an associate for production status of specific part numbers.

Compact Industrial Octal 1A/Quad 2A High-Side Switch with Diagnostics

MAX14916, MAX14916A

General Description

The MAX14916 and MAX14916A are equipped with eight high-side switches with an on-resistance of only $120m\Omega$ (typ), or $250m\Omega$ (max) at 125° C ambient temperature. Each channel is specified to handle up to 1.1A (MAX14916) or 1.5A (MAX14916A) of continuous current. Similarly, two adjacent channels can be driven together to form four 2.4A (MAX14916) or 3A (MAX14916A) switches.

The SPI interface has a built-in chip addressing decoder, allowing communication with up to four MAX14916 or MAX14916A devices utilizing a common SPI chip select (\overline{CS}) .

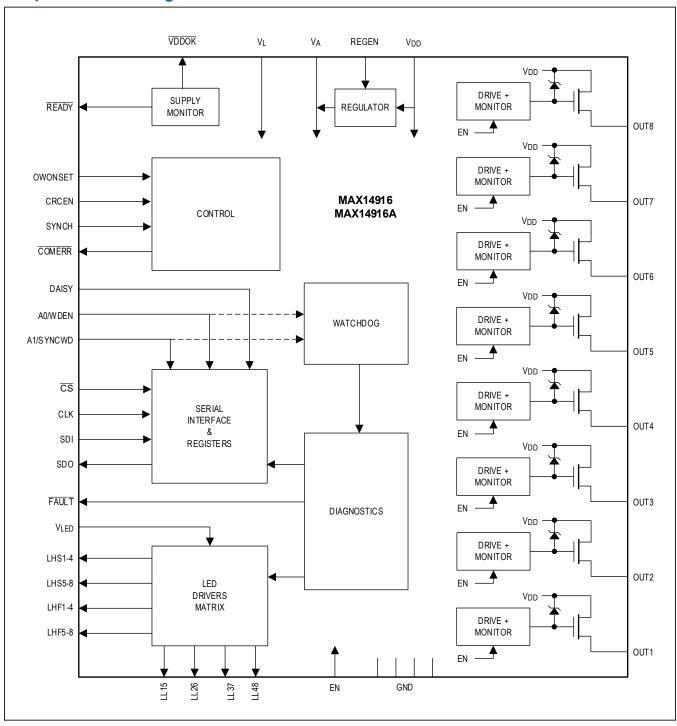
The SPI interface provides flexibility for global and per-channel configuration and diagnostic, including undervoltage detection, open-wire detection, overload and current limiting reporting, thermal conditions reporting, and more.

Each channel is equipped with open-wire detection that can detect an open-load in both switch on and off states. LED drivers provide indication of per-channel fault, status, and supply undervoltage conditions. Internal active clamps allow for fast turn-off of inductive loads.

Integrated line-to-ground and line-to-line surge protection only requires a single TVS on V_{DD} . Integrated surge protection works for quad and octal configuration.

The MAX14916 and MAX14916A are available in a compact 48-pin 6mm x 6mm QFN package.

Applications


- Industrial Digital Outputs
- PLC Systems

Benefits and Features

- MAX14916 Current Limit, 1.1A (min) or 1.38A (typ)
- MAX14916A Current Limit, 1.5A (min) or 2A (typ)
- Robustness and Smart Diagnostics
 - 65V Absolute Maximum Supply Range
 - Internal Clamps for Fast Inductive Load Demagnetization
 - · CRC Error Checking on the SPI Interface
 - Watchdog Timer
 - Open-Wire Detection, with Switches Both in ON and OFF States
 - Undervoltage Detection with UVLO
 - Loss of V_{DD} or GND Protection
 - · Thermal Shutdown Protection
 - Integrated ±1kV/42Ω IEC61000-4-5 Surge Protection
 - -40°C to +125°C Operating Ambient Temperature
- Reduces Power and Heat Dissipation
 - 250mΩ (max) On-Resistance at T_A = 125°C
 - 2mA (typ) Supply Current
 - Accurate Output Current Limiting
- Flexibility
 - · Addressable SPI Interface Reduces Isolation Cost
 - SYNCH Input for Simultaneous Update of Switches
 - LED Driver Matrix for 16 LEDs, Powered by 24V, 5V, or 3.3V
 - Flexible Logic Voltage Interface from 2.5V to 5.5V
- Compact 6mm x 6mm QFN Package

Ordering Information appears at end of data sheet.

Simplified Block Diagram

Compact Industrial Octal 1A/Quad 2A High-Side Switch with Diagnostics

Absolute Maximum Ratings

V _{DD}	0.3V to +65V
OUT(
V _A , V _L	0.3V to +6V
SDO, READY, COMERR	0.3V to (V _L + 0.3)V
REGEN, OWONSET	0.3V to +6V
FAULT	0.3V to 6V
SDI, CS, CLK, EN, ADDO/WDEN	, ADD1, SYNCH, CRCEN,
DAISY	0.3V to 6V
V _{LED}	0.3V to +70V

LH_, LL_, VDDOK	-0.3V to (V _{LED} + 0.3)V
OUT_ Load Current	Internally Limited
Continuous Power Dissipation	
(Multilayer Board) (T _A = +70°C, derate	44.68mW/°C above
+70°C)	3574.62mW
Operating Temperature Range	40°C to +125°C
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Soldering Temperature (reflow)	260°C

Note 1: All voltages relative to GND.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

Flip Chip QFN

Package Code	F486A6F-1		
Outline Number	21-100232		
Land Pattern Number	90-100077		
Thermal Resistance, Four-Layer Board:			
Junction to Ambient (θ _{JA})	22.38°C/W		
Junction to Case (θ_{JC})	0.56°C/W (bottom)		

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Compact Industrial Octal 1A/Quad 2A High-Side Switch with Diagnostics

Electrical Characteristics

 $(V_{DD} = +10 \text{V to } +36 \text{V}, V_{LED} = +3.0 \text{V to } 36 \text{V}, V_{A} = +3.0 \text{V to } +5.5 \text{V}, V_{L} = +2.5 \text{V to } +5.5 \text{V}, T_{A} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $V_{DD} = V_{LED} = 24 \text{V}, V_{A} = 3.3 \text{V}, T_{A} = +25 ^{\circ}\text{C}.)$ (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS			
DC CHARACTERISTI	DC CHARACTERISTICS/SUPPLY								
V _{DD} Supply Voltage	V _{DD}		10		36	V			
V _{DD} Supply Current	I _{DD}	EN = high, OUT_ switches on, no load, V_A and V_L supplied externally		2	3	mA			
		EN = low			3				
V _{DD} UVLO Rise Threshold	V _{DD_UVLO_R}	V _{DD} rising			9.6	V			
V _{DD} UVLO Fall Threshold	V _{DD_UVLO_F}	V _{DD} falling, OUT_ disabled, VddUvlo bit set	7.9			V			
V _{DD} UVLO Hysteresis	V _{DD_UVLO_H}			0.35		V			
V _{DD} Warn Rise Threshold	V _{DD} _ WARN_R	V _{DD} rising			14	V			
V _{DD} Warn Fall Threshold	V _{DD_WARN_F}	V _{DD} falling, VddWarn bit set, VDDOK pin set HiZ	12			V			
V _{DD} Warn Hysteresis	V _{DD} _ WARN_H			0.4		V			
V _{DD} Good Rise Threshold	V _{DD} _ GOOD_R	V _{DD} rising, VddNotGood bit set, VDDOK pin set HiZ			17	V			
V _{DD} Good Fall Threshold	V _{DD_GOOD_F}	V _{DD} falling	15			V			
V _{DD} Good Hysteresis	V _{DD} _ GOOD_H			0.4		V			
V _{DD} POR Rise Threshold	V _{DD_POR_R}	V _{DD} rising			6.8	V			
V _{DD} POR Falling Threshold	V _{DD_POR_F}	V _{DD} falling	5.6			V			
V _A Supply Voltage	V _{VA}	When V_A is supplied externally; REGEN = GND.	3.0		5.5	V			
V _A Supply Current	I _{VA}	EN = high, OUT_ are turned on, no load, no LEDs connected		0.5	0.85	mA			
V _A Undervoltage Lockout Threshold	V _{VA_UV}	V _{DD} = 24V, V _A falling	2.35		2.8	V			
V _A Undervoltage Lockout Hysteresis	Vva_uvhyst	V _{DD} = 24V		0.1		V			
V _L Supply Voltage	V _{VL}		2.5		5.5	V			
V _L Supply Current	I _{VL}	All logic inputs high or low		13	34	μA			
V _L POR Threshold	V _{L_POR}	V _L falling	0.87	1.32	1.5	V			
DC CHARACTERISTI	CS/SWITCH OU	JTPUTs (OUT_)							
On-Resistance	R _{OUT_HS}	I _{OUT} _ = -600mA (Note 6)		120	250	mΩ			

Compact Industrial Octal 1A/Quad 2A High-Side Switch with Diagnostics

Electrical Characteristics (continued)

 $(V_{DD} = +10 \text{V to } +36 \text{V}, V_{LED} = +3.0 \text{V to } 36 \text{V}, V_{A} = +3.0 \text{V to } +5.5 \text{V}, V_{L} = +2.5 \text{V to } +5.5 \text{V}, T_{A} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $V_{DD} = V_{LED} = 24 \text{V}, V_{A} = 3.3 \text{V}, T_{A} = +25 ^{\circ}\text{C}.)$ (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
		Octal configuration, MAX14916	1.10	1.38	1.67	
O		Quad configuration, MAX14916	2.40	2.78	3.20	1
Current Limit	ILIM	Octal configuration, MAX14916A	1.5	2.0	2.65	Α
		Quad configuration, MAX14916A	3.0	4.0	5.3	-
Off Leakage Current	I _{LKG}	OwOffEn_ = 1, switch off, OUT_ = 0V	-10		10	μΑ
DC CHARACTERIST	ICS/LINEAR RE	GULATOR				
Output Voltage			3.0	3.3	3.6	V
Current Limit	I _{CL} VA	REGEN open	25			mA
Short Current	I _{SHRT_VA}	REGEN open, V _A = 0V			60	mA
Load Regulation	_	0mA < I _{VA} < 20mA		0.1		mV/mA
REGEN Threshold	V _{TREGEN}		0.2			V
REGEN Leakage Current	I _{LK_REGEN}	REGEN = 0V	-50			μA
DC CHARACTERIST	ICS/OFF STATE	DIAGNOSTICS (OUT_)				,
	I _{PU_OWOFF1}	OWOff_ = 1, V _{OUT_} < 5V, OwOffCs1 = 0, OwOffCs0 = 0	10	20	32	- μΑ
Pullup Current,	I _{PU_OWOFF2}	OWOff_ = 1, V _{OUT_} < 5V, OwOffCs1 = 0, OwOffCs0 = 1	65	100	135	
OWOFF	I _{PU_OWOFF3}	OWOff_ = 1, V _{OUT_} < 5V, OwOffCs1 = 1, OwOffCs0 = 0	230	300	370	
	I _{PU_OWOFF4}	OWOff_ = 1, V _{OUT_} < 5V, OwOffCs1 = 1, OwOffCs0 = 1	480	600	720	
OUT_ Voltage, OWOFF	V _{OUT_OFF}	OWOff_ = 1, I _{OUT} _ = 0mA	5.7	6.7	7.8	V
Open Wire Detect Threshold, OWOFF	V _{TH} _OWOFF	OWOff_ = 1	5		5.8	V
		ShtVddEn_ = 1, ShrtVddThr1 = 0, ShrtVddThr0 = 0	8.2	9.0	10.0	
Short to V _{DD} Detect	V	ShtVddEn_ = 1, ShrtVddThr1 = 0, ShrtVddThr0 = 1	9.1	10	10.9	V
Threshold	V _{TH} SHVDD	ShtVddEn_ = 1, ShrtVddThr1 = 1, ShrtVddThr0 = 0	11	12	13] V
		ShtVddEn_ = 1, ShrtVddThr1 = 1, ShrtVddThr0 = 1	13	14	15	1
DC CHARACTERIST	ICS/ON STATE	DIAGNOSTICS				
Open Wire Detect		OWOn_ = 1, $R_{OWONSET} = 500k\Omega$	0.05	0.13	0.2	mA
Threshold Current,	I _{TH} OWON	OWOn_ = 1, $R_{OWONSET}$ = 160 $k\Omega$	0.25	0.35	0.55	
On		OWON_ = 1, $R_{OWONSET} = 30k\Omega$	1.8	2.4	2.9	
DC CHARACTERIST	ICS/LOGIC I/O					
Input Voltage High	V _{IH}		0.7xV _L			V
Input Voltage Low	V _{IL}				$0.3xV_L$	V
Input Threshold Hysteresis	V _{IHYS}			0.11xV _L		V

Compact Industrial Octal 1A/Quad 2A High-Side Switch with Diagnostics

Electrical Characteristics (continued)

 $(V_{DD} = +10 \text{V to } +36 \text{V}, V_{LED} = +3.0 \text{V to } 36 \text{V}, V_{A} = +3.0 \text{V to } +5.5 \text{V}, V_{L} = +2.5 \text{V to } +5.5 \text{V}, T_{A} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $V_{DD} = V_{LED} = 24 \text{V}, V_{A} = 3.3 \text{V}, T_{A} = +25 ^{\circ}\text{C}.)$ (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input Pulldown Resistor	R _{IN_PD}	See <u>Pin Description</u> for applicable pins		200		kΩ
Input Pullup Resistor	R _{IN_PU}	See <u>Pin Description</u> for applicable pins		200		kΩ
Output Logic-High (SDO)	V _{OH}	I _{LOAD} = -5mA (Note 6)	V _L - 0.6			V
Output Logic-Low	V _{OL}	I _{LOAD} = +5mA			0.33	V
SDO Output Tristate Leakage	I _{L_SDO}	CS = high	-1		+1	μA
DC CHARACTERISTI	CS/OPEN-DRA	IN OUTPUT (FAULT, COMERR, READY)	_			
READY Output Logic-High	V _{ODH}	I _{LOAD} = -5mA (Note 6)	V _L - 0.6			V
Output Logic-Low	V _{ODL}	I _{LOAD} = +5mA			0.33	V
Leakage	I _{ODL}	Open-drain output off, V = 5.5V	-1		+1	μA
DC CHARACTERISTI	CS/LED Driver	s (LH_, LL_, VDDOK)				
LED Supply Voltage	V_{LED}		3.0		V_{DD}	V
LH Voltage High	V _{OH_LH}	LH = on, I _{LEDH} = -5mA (Note 6)	V _{LED} - 0.3			V
LH Off Leakage Current	l _{L_LH}	LH_ = off, V _{LEDH} = 0V	-1		+1	μA
LL Output Voltage Low	V_{OH_LL}	LL = on, I _{LDL} = 5mA			0.3	V
LL Off Leakage Current	I <u>L_</u> LL	LL = off, V _{LL} = VLED	-1		+1	μΑ
DC CHARACTERISTI	CS/PROTECTION	ON				
OUT_ Clamp Voltage	V _{CL}	$V_{CL} = V_{DD}$ - OUT, $I_{OUT} = -500$ mA (Note 6), OUT_ is off	49	56		V
Channel Thermal Shut- down Temperature	T _{JSHDN}	Junction temperature rising. Per channel.		150		°C
Channel Thermal Shutdown Hysteresis	T _{JSHDN} _ HYST			15		°C
Chip Thermal Shutdown	T _{CSHDN}	Temperature rising.		150		°C
Chip Thermal Shutdown Hysteresis	T _{CSHDN} _ HYST			10		°C
TIMING CHARACTER						
Prop Delay LH	t _{PD_LH}	Delay from rising SYNCH edge to OUT_ rising to 90%. $R_L = 48\Omega$. $V_{DD} = 24V$. Figure 2		11	30	μs
Prop Delay HL	t _{PD_HL}	Delay from rising SYNCH edge to OUT_ falling to 10% of V _{DD} , V _{DD} = 24V, R _L = 48Ω, Figure 2		11	30	μs
Rise-Time	t _R	20% to 80% V_{DD} , V_{DD} = 24V, R_L = 48Ω, Figure 2		8		μs
Fall-Time	t _F	80% to 20% V_{DD} , V_{DD} = 24V, R_L = 48 Ω , Figure 2		8		μs

Compact Industrial Octal 1A/Quad 2A High-Side Switch with Diagnostics

Electrical Characteristics (continued)

 $(V_{DD}$ = +10V to +36V, V_{LED} = +3.0V to 36V, V_A = +3.0V to +5.5V, V_L = +2.5V to +5.5V, T_A = -40°C to +125°C, unless otherwise noted. Typical values are at V_{DD} = V_{LED} = 24V, V_A = 3.3V, T_A = +25°C.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS		
TIMING CHARACTERISTICS/WATCHDOG								
		WDTo[1:0] = 01b		200				
Watchdog Timeout	t_{WD}	WDTo[1:0] = 10b		600	ms			
		WDTo[1:0] = 11b		1200				
Watchdogs Timeout Accuracy	t _{WD_ACC}	WDTo[1:0] = 01b, 10b or 11b, SynchWDEn = 1, see <u>Config2 Register (0x0E)</u> for watchdog timeout	-30		+30	%		
TIMING CHARACTER	RISTICS/LED M	atrix						
LED Driver Scan rate	FLED	Update rate for each LED		1		kHz		
TIMING CHARACTER	ISTICS/SPI Fig	gure 1						
CLK Clock Period	t _{CH+CL}		100			ns		
CLK Pulse Width High	t _{CH}		40			ns		
CLK Pulse Width Low	t _{CL}		40			ns		
CS Fall to CLK Rise Time	t _{CSS}		40			ns		
SDI Hold Time	t _{DH}		10			ns		
SDI Setup Time	t _{DS}		10			ns		
SDO Propagation Delay	t _{DO}	C _{LOAD} = 10pF, CLK falling edge to SDO stable			30	ns		
SDO Rise and Fall Times	t _{FT}			1		ns		
CS Hold Time	tcsh		40			ns		
CS Pulse Width High	t _{CSPW}	Note 3	40			ns		
EMC								
ESD IEC Contact Discharge	V _{ESD_C}	OUT_ to GND, IEC61000-4-2		±7		kV		
ESD IEC Air Discharge	V _{ESD_A}	OUT_ to GND, IEC61000-4-2		±30		kV		
ESD	V _{ESD}	All other pins. Human Body Model (Note 4)		±2		kV		
Surge Tolerance	V _{SURGE}	OUT_ to GND, IEC61000-4-5 with 42 Ω , TVS on V _{DD} . (Note 5)		±1		kV		

Note 2: All units are production tested at $T_A = +25$ °C. Specifications over temperature are guaranteed by design.

Note 3: All logic input pins except \overline{CS} have a pulldown resistor. \overline{CS} has a pullup resistor.

Note 4: Bypass V_{DD} pin to GND with $1\mu F$ capacitor as close as possible to the device for high ESD protection.

Note 5: At typical application value of V_{DD} = 24V, with a TVS protection on V_{DD} to GND.

Note 6: All currents into the device are positive. All currents out of the device are negative.

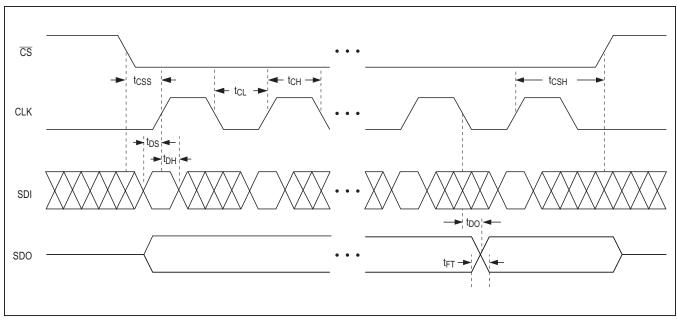


Figure 1. SPI Timing Diagram.

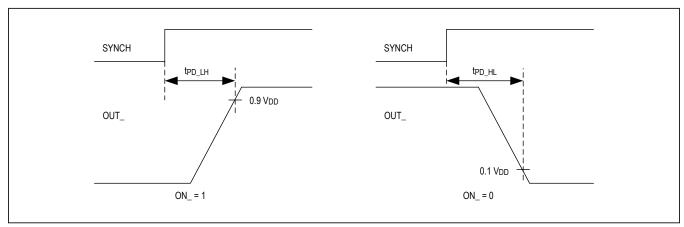
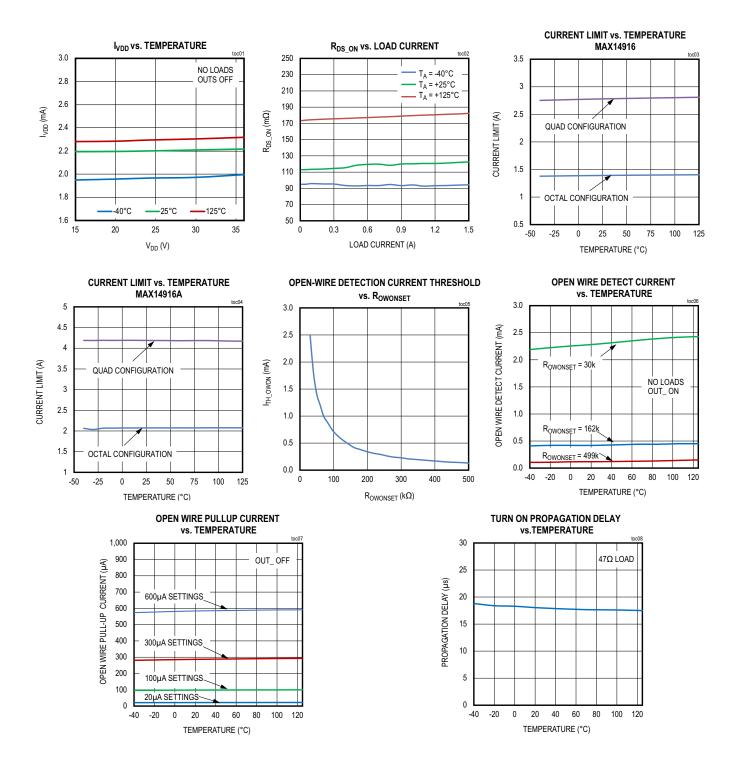
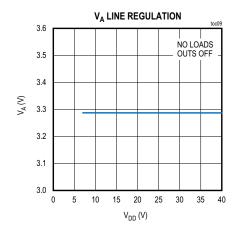
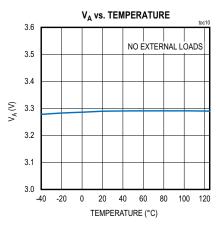
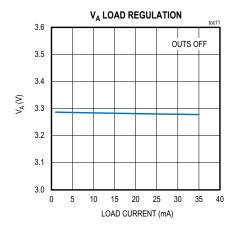



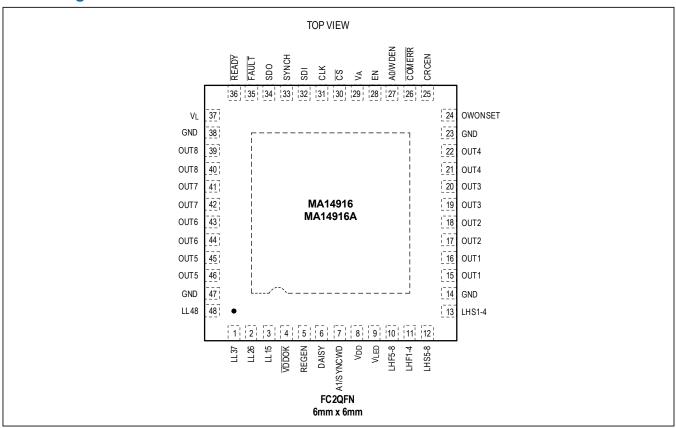
Figure 2. Propagation Delay Timing Characteristics


Typical Operating Characteristics


 $(V_{DD} = +24V, REGEN = open, V_L = +3.3V, T_A = +25$ °C, unless otherwise noted)



Typical Operating Characteristics (continued)


 $(V_{DD} = +24V, REGEN = open, V_L = +3.3V, T_A = +25$ °C, unless otherwise noted)

Pin Configuration

Pin Description

PIN	NAME	FUNCTION	REF SUPPLY	TYPE				
POWER SU	POWER SUPPLY							
EP, 8	V _{DD}	V_{DD} Supply Voltage, Nominally 24V. Connect all V_{DD} together. Bypass V_{DD} to GND through a 1 μ F capacitor.		Supply				
29	V _A	Analog Supply Input. Connect an external 3.0V to 5.5V supply to V_A or use the internal linear regulator by leaving REGEN open. Bypass V_A to GND through a $1\mu F$ ceramic capacitor.	GND	Supply				
5	REGEN	V_A Regulator Enable Input. Connect REGEN to GND to disable V_A regulator. Leave REGEN open to enable V_A regulator, which internally supplies V_A with 3.3V.	GND	Supply				
14, 23, 38, 47	GND	Ground. Connect all GND pins together.	GND	GND				
37	V _L	Logic Supply Input. V _L defines the logic levels on all logic interface pins. Bypass V _L to GND through a 100nF ceramic capacitor.	GND	Supply				
4	VDDOK	$\overline{\text{VDDOK}}$ is an active-low, open-drain logic output that indicates when the V_{DD} supply is OK. $\overline{\text{VDDOK}}$ turns on low when V_{DD} rises above 16V (typ) and turns off when V_{DD} falls below 13V (typ). Connect a LED with a pullup resistor to a voltage between 3.3V and V_{DD} .	GND	Logic				

Compact Industrial Octal 1A/Quad 2A High-Side Switch with Diagnostics

Pin Description (continued)

PIN	NAME	FUNCTION	REF SUPPLY	TYPE
SWITCH O	UTPUTS			
15, 16	OUT1	High-Side Switch Output 1	V _{DD}	Power
17, 18	OUT2	High-Side Switch Output 2	V _{DD}	Power
19, 20	OUT3	High-Side Switch Output 3	V _{DD}	Power
21, 22	OUT4	High-Side Switch Output 4	V _{DD}	Power
45, 46	OUT5	High-Side Switch Output 5	V _{DD}	Power
43, 44	OUT6	High-Side Switch Output 6	V _{DD}	Power
41, 42	OUT7	High-Side Switch Output 7	V _{DD}	Power
39, 40	OUT8	High-Side Switch Output 8	V _{DD}	Power
DIAGNOST	TIC SETTING	;		
24	OWON- SET	Open-Wire Detection Threshold Current Set. Connect a resistor between OWONSET and GND to define the threshold current for open-wire detection when the OUT_ switches are closed.	VA	Analog
CONTROL	INTERFACE			
28	EN	Enable Logic Input. Drive EN high for normal operation. Drive EN low to disable/three-state all OUT_ drivers. Internal weak pulldown.	VL	Logic
35	FAULT	FAULT Global Diagnostics Open-Drain Output. The FAULT transistor turns on low under conditions defined in the <i>Interrupt Register (0x03)</i> . Connect a pullup resistor to V _L .	VL	Logic
33	SYNCH	SYNCH Input. All eight output switches are updated simultaneously on the rising edge of SYNCH, as determined by the contents of the <u>SetOUT Register (0x00)</u> . The OUT_ states do not change when SYNCH is held low. When SYNCH is high, the output states change immediately when a new value is written into the <u>SetOUT Register (0x00)</u> . Internal weak pullup.	VL	Logic
25	CRCEN	CRC Enable Select Input. Drive CRCEN high to enable CRC generation and error detection on the serial data. CRC has a weak pulldown.	VL	Logic
36	READY	$\overline{READY} \text{ is an open-drain output that is passive low when the internal logic chip supply and V_L I/O supply are both higher than their respective UVLO thresholds, indicating that the part is ready for SPI communication. When the internal register supply falls below the UVLO threshold, the register contents are lost and \overline{READY} transitions active-high. Connect a pulldown resistor to \overline{READY}.}$	VL	Logic
26	COMERR	SPI Error Open-Drain Output. The $\overline{\text{COMERR}}$ transistor turns on low when an error occurs during a SPI transaction. Connect a pullup resistor to V _L .	V _L	Logic

Compact Industrial Octal 1A/Quad 2A High-Side Switch with Diagnostics

Pin Description (continued)

PIN	NAME	FUNCTION	REF SUPPLY	TYPE
SERIAL IN	ITERFACE			
32	SDI	Serial Data Input. SPI MOSI data from controller. SDI has a weak pulldown.	VL	Logic
34	SDO	Serial Data Output. SPI MISO data output to controller.	VL	Logic
31	CLK	Serial Clock Input from SPI Controller. CLK has a weak pulldown.	VL	Logic
30	CS	Chip Select Input from Controller. $\overline{\text{CS}}$ has a weak pullup.	VL	Logic
27	A0/WDEN	Chip address LSB for addressable SPI or SPI watchdog enable input for daisy-chain SPI. AO/WDEN has a weak pulldown.	VL	Logic
7	A1/SYN- CWD	Chip Address MSB for Addressable SPI. SYNCH pin watchdog enable input for daisy-chain SPI. A1/SYNCWD has a weak pulldown.	VL	Logic
6	DAISY	Daisy-Chain Enable Select Input. Drive DAISY high to enable daisy-chained SPI mode. DAISY has a weak pulldown.	VL	Logic
LED DRIVE	ER MATRIX			
9	V _{LED}	Supply for LED Drivers. Apply supply voltage of 3.0V to V _{DD} .	GND	Power
3	LL15	OUTs 1, 5 Status/Fault LED Cathode Output (Open-Drain Low-Side). Connect a resistor in series to set the LED current.	V _{LED}	Analog
2	LL26	OUTs 2, 6 Status/Fault LED Cathode Output (Open-Drain Low-Side). Connect a resistor in series to set the LED current.	V _{LED}	Analog
1	LL37	OUTs 3, 7 Status/Fault LED Cathode Output (Open-Drain Low-Side). Connect a resistor in series to set the LED current.	V _{LED}	Analog
48	LL48	OUTs 4, 8 Status/Fault LED Cathode Output (Open-Drain Low-Side). Connect a resistor in series to set the LED current.	V _{LED}	Analog
13	LHS1-4	OUTs 1-4 Status LED Anode Output (Open-Drain High-Side). Connect a resistor in series to set the LED current.	V _{LED}	Analog
12	LHS5-8	OUTs 5-8 Status LED Anode Output (Open-Drain High-Side). Connect a resistor in series to set the LED current.	V _{LED}	Analog
11	LHF1-4	OUTs 1-4 Fault LED Anode Connection (Open-Drain High-Side). Connect a resistor in series to set the LED current	V _{LED}	Analog
10	LHF5-8	OUTs 5-8 Fault LED Anode Connection (Open-Drain High-Side). Connect a resistor in series to set the LED current.	V _{LED}	Analog

Compact Industrial Octal 1A/Quad 2A High-Side Switch with Diagnostics

Detailed Description

The MAX14916 and MAX14916A are octal high-side switches. The high-side switches have $250 m\Omega$ (max) on-resistance at T_A = $125^{\circ}C$. Extensive diagnostics can be enabled through SPI to indicate open-wire, overload, current limiting, output short to V_{DD} , low supply voltage, and high chip temperature conditions. Active clamping limits the negative OUT_ voltage to (V_{DD} - V_{CL}) and allows for freewheeling currents to demagnetize the inductive loads quickly. A watchdog timer monitors SPI activity and automatically turns the OUT_ switches off in case of missing SPI activity.

Synchronization

On the rising edge of the SYNCH logic input, all OUT_switches change to the new state previously programmed into the SetOUT register. If SYNCH is held high, then the outputs change state immediately when the SetOUT register is written to (transparent mode).

When EN pin is low, all outputs are off independent of the SYNCH pin state and the SetOUT register value.

Power-Up and Undervoltage Lockout

When the V_{DD} , V_A , V_L , or V_{INT} supply voltages are under their respective UVLO thresholds, all OUT_ switches are off and the open-wire detection current sources are turned off. V_{INT} is an internal supply for the registers and logic that is derived from the V_A or V_{DD} supply.

When the V_{DD} supply or V_A supply rises, the internal logic supply, V_{INT}, rises. If V_L and V_{INT} are both above their UVLO thresholds, the chip is ready for communication and the $\overline{\text{READY}}$ pin becomes passive low to indicate that the part is ready to communicate through the SPI interface.

In addressed SPI mode (DAISY pin is low) the VddUvlo, VddNotGood, VddWarn, Vint_UV, and VA_UVLO bits are set = 1 and the FAULT output is set low. These bits and the FAULT pin only clear once the GlobalErr register is read.

The register contents are lost when both V_A and V_{DD} and the internal register supply, V_{INT} , fall below its respective undervoltage lockout threshold.

The Vint_UV bit = 1 signals that the register contents are in power-on-reset state and any custom configuration can be programmed or needs to be reprogrammed after a power reset event.

When V_{DD} rises above $V_{DD_UVLO_R}$ (with VDDOnThr = 0) or above $V_{DD_GOOD_R}$ (with VDDOnThr = 1) the VDDOK pin is turned low, indicating that the V_{DD} supply is high enough so the OUT_ switches can be operated normally. Refer to Figure 3 and Figure 4 for details.

When V_{DD} falls below V_{DD} WARN F (~13V), the VDDWarn bit and, if VddOKM = $\overline{0}$, FAULT are set but the OUT switches continue operating normally.

When V_{DD} falls further below $V_{DD_UVLO_F}$, the VddUvlo bit is set and the OUT switches are turned off.

In daisy-chain mode (DAISY pin high), the $\overline{\text{READY}}$ and $\overline{\text{VDDOK}}$ pins are active, but the $\overline{\text{FAULT}}$ pin does not signal supply conditions.

Chip Thermal Protection

When the chip temperature rises above the thermal shutdown threshold of 150°C, the chip enters shutdown protection and all overloaded OUT switches are kept off until chip temperature drops below 140°C. The ThrmShutd bit and FAULT output are set.

If the chip temperature rises above 165°C due to a short, an overload on the V_A regulator, or LED matrix, the internal V_A linear regulator, all OUT switches, and the LED matrix are shutdown to prevent part damage. In this condition, the ThrmShutd bit and \overline{FAULT} output are already set and in daisy-chain mode the F-bits in SDO are all set to 1. The register contents are not lost in thermal shutdown if V_{DD} supply is present.

When the chip temperature then falls by the hysteresis amount, the V_A regulator turns on, LED matrix and OUT switches are restored to normal operation.

Channel Thermal Management

Every driver's temperature is constantly monitored. If the temperature of a driver rises above the thermal shutdown threshold of 150°C (typ), that channel is automatically turned off for protection. After the temperature drops by 15°C, the driver will be turned on again.

When a driver turns off due to thermal shutdown, the per-channel overload bits, OVL_, the interrupt OverLdFault bit and FAULT pin indicate this condition, if enabled. See *Register Map*.

Current Limiting

Each high-side switch features active current limiting. When the load current exceeds 1.1A (min) with MAX14916 and 1.5A (min) with MAX14916A, the load current is limited by the high-side switch. The current limit is increased to 2.4A (min) with MAX14916 and 3.0A (min) with MAX14916A if two channels are paralleled. If the load impedance tries to draw higher current, the voltage across the high-side FET switch increases and the temperature of the FET increases in accordance with the FET's power dissipation. When an OUT_ channel shows an overcurrent, the CL_ bit is set in the CurrLimChF register.

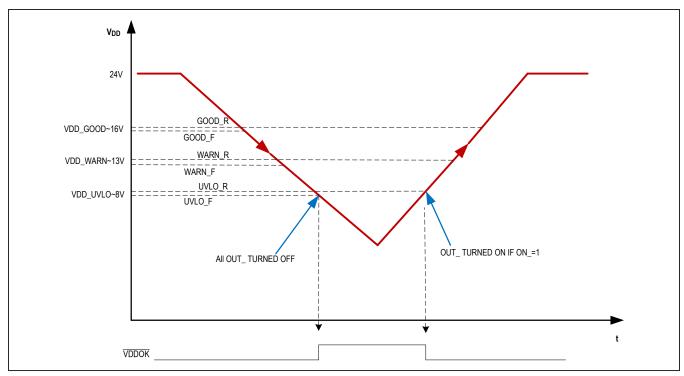


Figure 3. V_{DD} Monitoring with VDDOnThr = 0

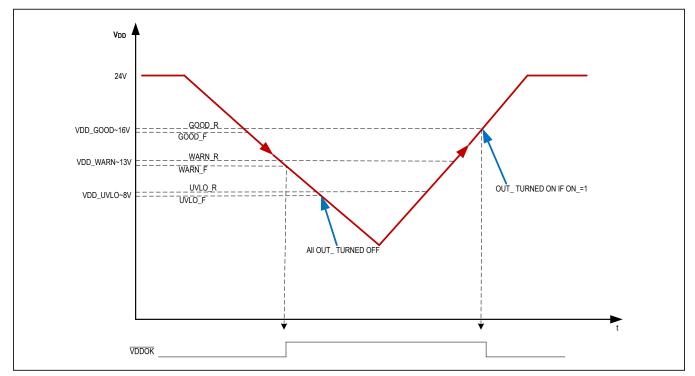


Figure 4. V_{DD} Monitoring with VDDOnThr = 1

Compact Industrial Octal 1A/Quad 2A High-Side Switch with Diagnostics

Lamp Load Turn On

Incandescent lamps initially draw high currents while their filament is cold, and this turn-on current reduces as the filament heats up. The MAX14916 and MAX14916A have a scheme that automatically detects the presence of a lamp load. When a lamp load is detected, the overtemperature and overload messages are avoided for a duration of 200ms. The lamp load detection is transparent to the user and is not signaled to the user.

Diagnostics

<u>Table 2</u> lists the per-channel diagnostics made available by the MAX14916 or MAX14916A. The state of the high-side switch for which diagnostics are determined is shown in the <u>Table 1</u>.

Table 2 summarizes the global diagnostics.

Diagnostics Filtering

Open-wire detection and short-to-V_{DD} detection, in conjunction with reactive loads, can take many milliseconds to settle to stable conditions after a change

of high-side switch state. During this time, diagnostic detection would not generate reliable results. Therefore, after the OUT_ switching instant, a blanking period of 4ms (optionally 8ms through register bit) is observed, during which these diagnostics are not evaluated. After this 4ms blanking time, an averaging filter is engaged for 4ms, after which the short-to-V_{DD} and open-wire diagnostics are determined and updated as per channel diagnostics in the OwOffChF, OwOnChF, and ShtVDDChF registers, and consequentially, the Interrupt register, FLEDs (if FLEDSet = 0), and diagnostic bits in the SDO data (if read).

When an OUT_ switch changes On/Off state, the diagnostic state for the previous state is cleared internally. The registers diagnostic bits are cleared if FLatchEn = 0. If FLatchEn = 1, the diagnostic bits become clear on read and are cleared by an SPI read command.

For the overload and overcurrent diagnostics detection, a 54µs filter time is employed and there is no blanking time. If a lamp load is detected on an OUT_, this is seen as a normal load and, therefore, overload and overcurrent diagnostics are not set during the lamp-load detect time.

Table 1. Per-Channel Diagnostics

		Ť	
PER CHANNEL DIAGNOSTIC	SWITCH STATE	ENABLED	INTERRUPT MASK ENABLED
Overload	Closed	by default	by OverLdM
Overcurrent	Closed	by default	by CurrLimM
Open-Wire On	Closed	per channel	by OWOnM
Open-Wire Off	Open	per channel	by OWOffM
Short to VDD	Open	per channel	by ShtVddM

Table 2. Global Diagnostics

GLOBAL DIAGNOSTICS	FUNCTION	ENABLED	FAULT INTERRUPT MASK
ThrmShutd	Chip thermal shutdown	Always On	None
Vint_UV	Undervoltage on the internal supply for the SPI registers	Always On	None
VA_UVLO	V _A was in undervoltage	Always On	SupplyErrM
VddWarn	Low V _{DD} warning	Always On	VddOKM
VddUvlo	V _{DD} supply in UVLO, all OUT_ switches turned off	Always On	SupplyErrM
VddNotGood	Not Good V _{DD} warning	Always On	VddOKM
WDErr	SPI has no activity for the timeout period	by WDTo[1:0] (DAISY = Low) by A0/WDEN (DAISY = High)	ComErrM
SynchErr	SYNCH input stuck low for the timeout period	by SynchWDEn (DAISY = Low) by A1/SYNCWD (DAISY = High)	ComErrM
ComErr	SPI CRC or Communication error	by CRCEN pin	ComErrM

Open-Wire Detection

Monitoring of an open-wire load condition can be enabled on a per-channel basis through serial configuration. Openwire detection can be selected for either, or both, of the cases with a high-side switch in the on or/and the off state.

Open-Wire Detection with Switch On

Open-wire detection can be enabled on any OUT_ switch through the OwOnEn_ bits. When the HS switch is on, the load current flowing out of the high-side switch is monitored. If this current drops below a threshold value set through the resistor connected to the OWONSET, an open-wire detection fault is reported.

The OWONSET resistor allows selecting a load current threshold in the range of 0.35mA (typ) to 2.5mA (typ). Refer to *Typical Operating Characteristics* graph for openwire detection current threshold vs. OWONSET resistor to select a suitable resistance for the open-wire current threshold.

When two channels are paralleled for achieving higher total load, the open-wire ON diagnostics need closer consideration. The open-wire ON detection should be enabled on all paralleled channels. If open-wire is not signaled on any of the paralleled channels, then an open-wire condition does not exist. Similarly, if open-wire is signaled on all paralleled channels, then an open-wire condition does exit.

For the intermediate case where one channel signals an open-wire while the other does not, an open-wire condition might exist, but due to the level of channel-to-channel mismatching, also might not exist. In this case, if an accurate open-wire measurement is required, based on the current threshold set by the OWONSET resistor, the following procedure should be used:

1) Turn-off the high-side switch of the channel that shows an open-wire ON condition.

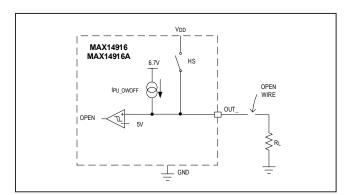


Figure 5. Open-Wire Detection Scheme

Compact Industrial Octal 1A/Quad 2A High-Side Switch with Diagnostics

 Then recheck the OWOn_ diagnostic on the complementary channel, whose open-wire ON diagnostic was off. This provides an accurate open-wire ON condition.

For open-wire with switch on LED indication, the fault LED should be controlled by the microcontroller, not autonomously by the MAX14916 or MAX14916A.

Open-Wire Detection with Switch Off

Monitoring of an open-wire condition in the switch off state can be enabled on individual channels through the OWOffEn_ bits. When the HS switch is off, a weak current source, IPU_OWOFF, is enabled that pulls OUT_ up to 6.7V during a wire break. If the OUT_ voltage is above 5V(min) and below the V_{TH_SHVDD}, an open-wire fault is signaled.

For two paralleled channels, enable open-wire detection only on one of the channels so that the pullup current is kept low. Add a $500k\Omega$ resistor from OUT_ to GND to pull down OUT_ to approximately 6.7V or if unconnected above approximately 6.7V.

Short to V_{DD} Detection

The MAX14916 and MAX14916A can detect shorts to V_{DD} , if enabled through SPI. This only detects when an OUT_ switch is off. If the OUT_ voltage is higher than the threshold voltage set by the ShrtVddThr0 and ShrtVddThr1 bits, a ShtVddFault is indicated in the Interrupt and ShtVddChF registers, as well as the FAULT output pin (if not masked). The bits allow setting a V_{TH}_{SHVDD} threshold in the range of 9V to 14V when V_{DD} is above VDD_GOOD threshold. For V_{DD} below VDD_GOOD threshold of 16V (typ), the V_{TH}_{SHVDD} is always set to 9V independently by the ShtVddThr[1:0] bits.

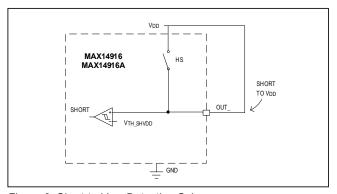


Figure 6. Short-to- V_{DD} Detection Scheme

Compact Industrial Octal 1A/Quad 2A High-Side Switch with Diagnostics

Diagnostic Bit Behavior

The per-channel diagnostic bits (OVL_, CL_, OWOff_, OWOn_, SHVDD_) can be configured to be latched (clear on read) or real-time through the FLatchEn bit in the Config1 register. When latched diagnostics are enabled (FLatchEn = 1), the diagnostic bits are set = 1 when a fault is detected and remains = 1, even if the fault disappears. This bit is only reset to = 0 when the cause of the fault has disappeared AND the relevant fault register is read through SPI in addressable SPI mode. If the cause of the fault has not disappeared, the diagnostic bit remains = 1.

In daisy-chain mode, the FAULT pin and the F-bits in SDO are cleared on the following SPI cycle if the fault condition was removed.

The per-channel faults in each of the five error registers are logically or'ed together to produce the fault bits in the Interrupt register. This is shown in <u>Figure 7</u> on the basis of overload diagnostics.

FAULT Pin Signalling

The FAULT pin is an open-drain logic output that transitions low when a fault condition is detected. The source of faults are the eight bits in the Interrupt register: per-channel faults and global faults. The source of FAULT can be masked through the Mask register.

In addressable SPI mode, the diagnostics can be latched (FLatchEn = 1), in which case the $\overline{\text{FAULT}}$ pin can only be cleared by reading the Interrupt register AND the corresponding fault register(s), whose fault is latched in the Interrupt register. In latched diagnostics mode, $\overline{\text{FAULT}}$ cannot be cleared by only reading the Interrupt register. If FLatchEn = 0, then the diagnostic bits, the Interrupt register bits and the $\overline{\text{FAULT}}$ pin are not latched, so are real time.

In daisy-chain mode, the $\overline{\text{FAULT}}$ pin is latched, so is cleared on the next SPI cycle, if the cause of the fault has disappeared.

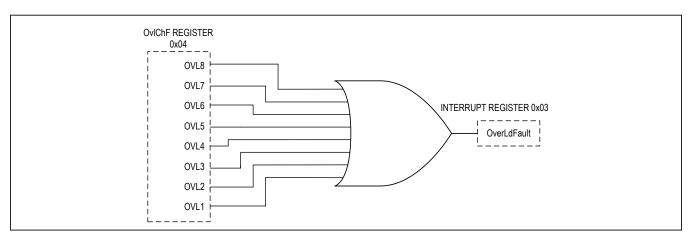


Figure 7. Overload Interrupt Diagnostic Scheme

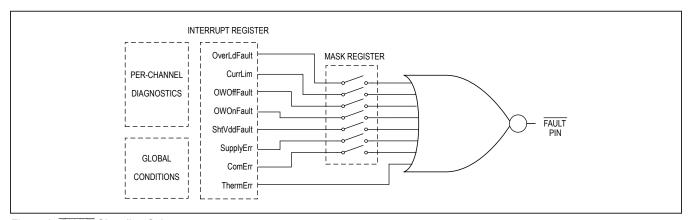


Figure 8. FAULT Signaling Scheme

Compact Industrial Octal 1A/Quad 2A High-Side Switch with Diagnostics

Watchdog

The MAX14916 and MAX14916A provide two watchdog timers to allow monitoring activity on the SPI interface and on SYNCH pin. In daisy-chain SPI mode, drive A0/WDEN and/or A1/SYNCWD high to enable the watchdog for SPI and/or SYNCH pin. In addressable SPI mode, the watchdog timer is enabled through the WDTo_ bits. If enabled, it will monitor and expect clock activity on the CLK and $\overline{\mbox{CS}}$ inputs. At least one valid SPI cycle must be detected in the WD-timeout period. This means that the CLK input must have a multiple of 8 clock cycles during a $\overline{\mbox{CS}}$ low period.

The SYNCH pin watchdog can be enabled by SynchWDEn bit and it will monitor the SYNCH pin if it is not stuck low. At least a 1µs SYNCH high must be detected in the WD-timeout period to avoid SYNCH pin watchdog error.

If the watchdog criterion is not met, all OUT_ switches are automatically turned off and the FAULT pin is set active-low. In addressable SPI mode, the WDErr and ComErr bits are set to 1.

In addressable SPI mode, SYNCH and SPI watchdog timeout can be selected through the WDTo[1:0] bits in the Config2 register. In daisy-chain SPI mode, the watchdog timeout for both SPI and SYNCH pin is 1.2s.

LED Drivers

The 4x4 LED driver crossbar matrix offers an efficient configuration for driving up to 16 LEDs. The LEDs can either be turned on/off by the SPI controller by setting the SetSLED and/or SetFLED register bits in addressable SPI mode, or can be controlled by the MAX14916 or MAX14916A autonomously to indicate per-channel status and fault conditions, depending on configuration in the Config1 register. The number of LEDs can be reduced when the MAX14916 or MAX14916A is configured as quad high-side switches. In such configuration, only one status and one fault LED per two paralleled channels is required as shown in Figure 9a. In this configuration Outputs 1–2, 3–4, 5–6, and 7–8 are connected together as well as low sides of matrix switches, pin LL15 and LL2, and pin LL37 and LL48 are connected together.

If controlled internally (SLEDSet = 0 or FLEDSet = 0), a channel's status LED will automatically be turned on when the corresponding OUT_ switch is on and there is no fault condition. If diagnostics detection is enabled on any OUT_ switch and a fault is detected, its associated fault LED (FLED) is turned on and its associated status LED (SLED) is automatically turned off. This means that for any OUT_ channel, its SLED and its FLED will never be on simultaneously.

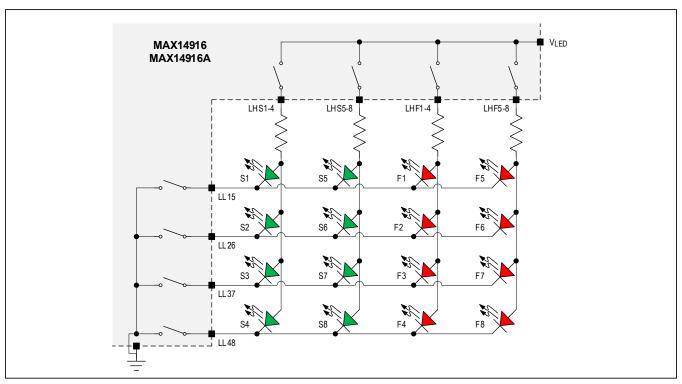


Figure 9. LED Matrix Scheme for Octal Configuration

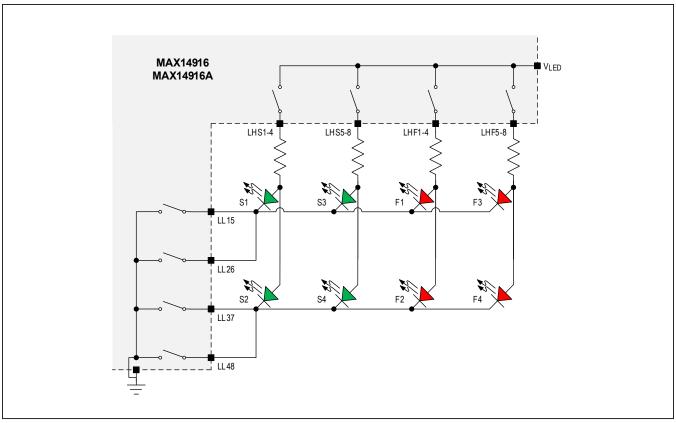


Figure 9a. LED Matrix Scheme for Quad Configuration

If FLEDSet = 0, diagnostics that are enabled (SHVDD_, OWOn_, OWOff_, CL_, OVL_) will result in FLEDs turning on when a fault is detected. Only overcurrent detection can be masked from driving the FLEDs through the LEDCurrLim bit.

When a lamp load is detected during OUT_ turn-on, its SLED is turned on and its FLED stays off.

If the FLEDs are controlled internally, they are always filtered, both in daisy chain and addressable SPI modes. When controlled internally, the FLED minimum on-time can be programmed through the two FLEDStrech[1:0] bits. The SLEDs are real-time when controlled internally.

The LED matrix is powered through the V_{LED} supply input, which can be in the range of the 3.0V (min) up to the V_{DD} field supply voltage.

If daisy-chain mode is selected (DAISY pin high) the LED matrix is always controlled autonomously by the MAX14916 and MAX14916A. FAULT LEDs signal only OVL faults and they are stretched by 2s.

For every current limiting resistor, R, each of the four LEDs in a column string is pulsed for a quarter of the time, so that current only flows through one LED and resistor at any one time. Thus the resistors, R, determine the LED current through one LED during the pulse. Each LED is pulsed on at a rate of 1kHz (typ) and is on for 25% of the 1ms period. Thus the average current flowing through a LED that is turned on, is about 0.25 x ($V_{LED} - V_F$)/R. V_F is the forward voltage of the LED. The resistor value should be chosen according to the LED's current/light intensity requirements.

For quad configuration, the current through each LED is doubled and the LED current limiting resistors should be calculated using the equation $I_{LED} = 0.5 \text{ x} (V_{LED} - V_F)/R$.

Compact Industrial Octal 1A/Quad 2A High-Side Switch with Diagnostics

Serial Interface

The MAX14916 and MAX14916A communicate with the host controller through a high-speed SPI serial interface. The interface has three logic inputs: clock (CLK), chip select $\overline{(CS)}$, serial data in (SDI), and serial data out (SDO). The SDO is three-stated when \overline{CS} is high. The maximum SPI clock rate is 10MHz. The SPI interface logic complies with SPI clock polarity CPOL = 0 and clock phase CPHA = 0.

The MAX14916 and MAX14916A SPI can either be operated in addressable SPI mode or in daisy-chain mode. Addressable SPI (DAISY = low) allows direct communication with up to four MAX14916 and MAX14916A devices on a shared SPI using a single shared $\overline{\text{CS}}$ signal. Addressable SPI offers direct chip access and getting global diagnostics in the same SPI cycle. Addressable SPI supports both single cycle and burst mode read/writing.

Daisy chained SPI is enabled by driving DAISY = high. In daisy-chain mode, the first SDO byte provides the channel diagnostics based only on driver overload. Daisy-chain mode provides limited features like reduced diagnostics and configuration.

Since the power-on default configuration is different in daisy-chain mode versus addressable SPI mode, the MAX14916 and MAX14916A do not support dynamic switching between daisy-chain and addressable SPI modes during operation.

Addressable SPI Chip Addressing (A1, A0)

In addressable SPI mode, an SPI controller can communicate with up to four MAX14916 and MAX14916A devices on a shared, non-daisy-chained SPI bus with one single shared $\overline{\text{CS}}$ through chip addressing. Each chip on the shared SPI is assigned an individual chip address through the logic input pins A1 and A0, see Table 3.

The SPI controller addresses a specific chip by sending the appropriate A1 and A0 logic in the first and second bits of the SPI read/write command. The MAX14916 and MAX14916A monitor the SPI-address in each SPI read/write cycle and responds appropriately when the address matches the programmed address for that IC.

Addressable SPI In-Band Diagnostic Fault Signaling

In every addressable SPI cycle, the MAX14916 and MAX14916A return six bits in SDO within the first eight SPI CLK cycles. These six bits include the global short-to- V_{DD} , wire-break-on, wire-break-off, overload, overcurrent as well as a global diagnostics bit. The global fault bit, GlobIF, is the logic OR of the ComErr, SupplyErr and ThermErr bits. These six diagnostic bits allow for fast identification of the specific channel in fault or global fault condition.

During an SPI write cycle, the second SDO byte returns eight fault bits, one bit associated with each OUT channel. These bits are the logic OR of the per-channel diagnostic faults.

Table 3. SPI Device Address Selection

A1	A0	DEVICE ADDRESS
LOW	LOW	00
LOW	HIGH	01
HIGH	LOW	10
HIGH	HIGH	11

Compact Industrial Octal 1A/Quad 2A High-Side Switch with Diagnostics

Single-Cycle Addressed SPI Read

<u>Figure 10</u> shows the SPI read command in addressable SPI mode (DAISY = low).

Single-Cycle Addressed SPI Write

<u>Figure 11</u> shows the SPI write command in SPI addressable mode (DAISY = low):

The F_ bits in the second byte of SDO write cycle are the per-channel fault bits. These are the logic OR of the channel fault bits in the OvlChF, CurrLimChF, OwOffChF, OwOnChF and ShtVDDChF registers. If only one OUT channel has diagnostic fault(s), then an SPI Write command provides full diagnostic information: the channel and all the faults. The only reason to subsequently read the diagnostic registers is to reset the diagnostic bits.

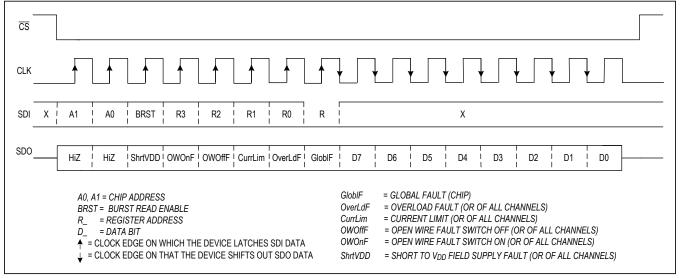


Figure 10. Addressable SPI Single Read Command

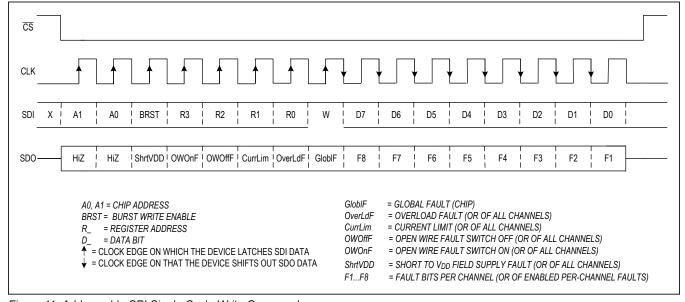


Figure 11. Addressable SPI Single Cycle Write Command

Compact Industrial Octal 1A/Quad 2A High-Side Switch with Diagnostics

SPI Burst Write

In addressable SPI mode (DAISY = low), burst SPI write is supported. This allows efficient writing of registers that are commonly accessed: SetOUT, SetSLED and SetFLED. Burst SPI uses one SPI cycle and one register address to write to multiple consecutive registers. A burst write is enabled through the BRST bit in the SDI command byte. If the BRST bit is set, the MAX14916 and MAX14916A expect an SPI write cycle writing to 2 or 3 registers. The chip-select input $\overline{(CS)}$

must be held low during the entire burst write cycle. The SPI clock continues clocking throughout the burst cycle. Only the initial register address (0x00) is specified in the SDI command byte, followed by two or three bytes of data. The burst length is defined by the number of CLK clocks in the SPI cycle: for a 2 register burst write, 24 clocks are needed if CRC is not used, and 32 clocks are needed with CRC. For a 3 register burst write, 32 SPI clocks are needed without CRC enabled, and 40 clocks with CRC. The burst cycle ends when the $\overline{\text{CS}}$ is driven high.

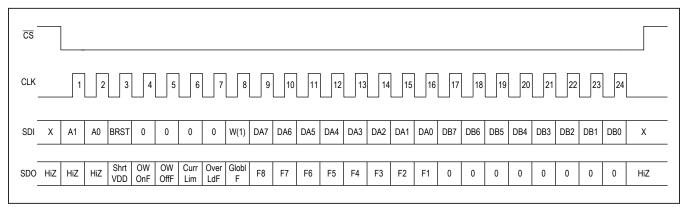


Figure 12. Addressed SPI Two Byte Write Command

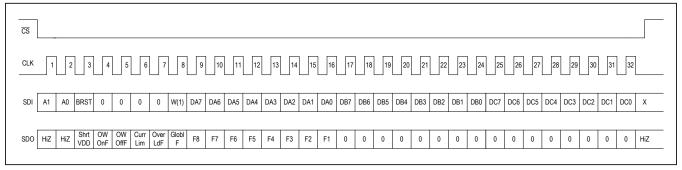


Figure 13. Addressed SPI Three Bytes Burst Write Command

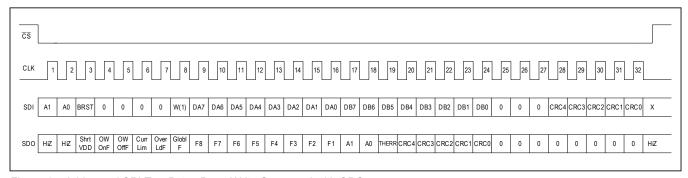


Figure 14. Addressed SPI Two Bytes Burst Write Command with CRC

(*) CRC_ bits are calculated on all the data sent before CRC_ bits.

Compact Industrial Octal 1A/Quad 2A High-Side Switch with Diagnostics

SPI Burst Read

In addressable SPI mode (DAISY = low), burst SPI read is supported. Burst SPI read allows efficient reading of multiple registers in one SPI cycle. The MAX14916 and MAX14916A only support burst reading of the diagnostic registers OvIChF, CurrLimChF, OwOffChF, OwOnChF, ShtVDDChF, GlobalErr. Set the

BRST bit in the SDI command byte to signal a burst SPI cycle. The first register address must be 0x04 (OvlChF register) and it must end with the register 0x09 (GlobalErr register). Total of six consecutive registers can be read within the burst read cycle. If the burst read command ends before the GlobalErr register, a communication error is signaled on $\overline{\text{COMERR}}$ pin.

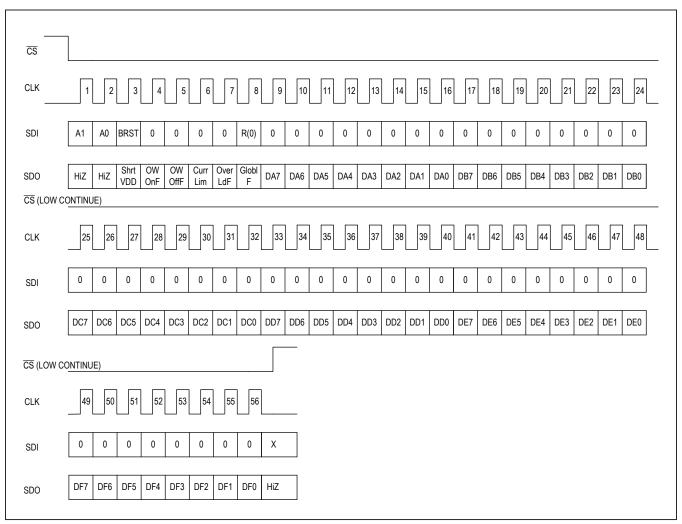


Figure 15. Addressed SPI Burst Read Command

Compact Industrial Octal 1A/Quad 2A High-Side Switch with Diagnostics

Figure 16. Addressed SPI Burst Read Command with CRC

Compact Industrial Octal 1A/Quad 2A High-Side Switch with Diagnostics

Daisy-Chained SPI

Daisy-chained SPI mode (DAISY = high) allows communication with multiple MAX14916 and MAX14916A devices with one $\overline{\text{CS}}$ signal in one SPI cycle. In daisy-chain mode, register access is not possible. Switching between daisy chain and addressable mode is not supported. Daisy-chain mode only allows turning the OUT_switches on/off and reading per channel thermal overload diagnostics as well as chip thermal shutdown.

<u>Figure 18</u> shows a daisy-chain SPI command frame without CRC enabled (CRCEN = low), based on only one device in the SPI chain. <u>Figure 19</u> shows the command sequence with 3 MAX14916 or MAX14916A devices in the daisy chain.

The ON_ bits turn the OUT_ switches on or off. The F_ bits are per-channel diagnostics, and are the same as the OVL_ bits in the OvlChF register. The F_ bits are latched and are, therefore, only cleared on the following SPI cycle if the fault has disappeared before the following SPI cycle. The F_ bits are filtered, so do not go active when a lamp load is detected. In chip thermal shutdown, all F_ bits are set to 1.

Daisy-chain SPI mode also supports CRC error detection, which lengthens the SPI cycle to 16 CLK cycles per MAX14916 or MAX14916A.

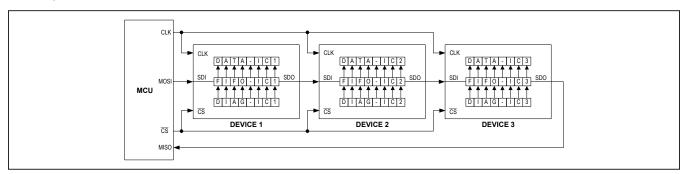


Figure 17. Daisy-Chaining Diagram of Three MAX14916 or MAX14916A Devices

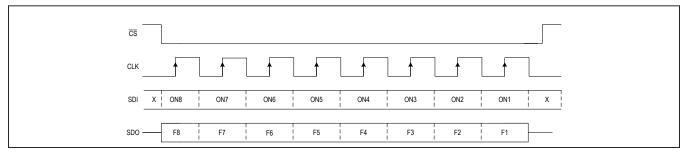


Figure 18. Single Daisy-Chain SPI Command

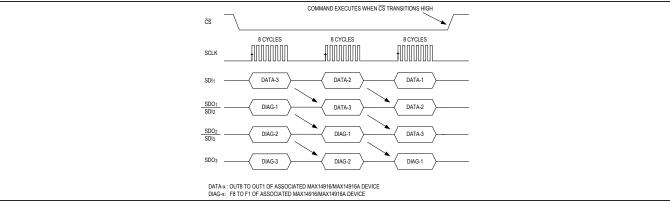


Figure 19. Command Sequence

Compact Industrial Octal 1A/Quad 2A High-Side Switch with Diagnostics

Checking of Clocks on the Serial Interface

In addressable SPI and daisy-chain SPI modes, the MAX14916 and MAX14916A check that the number of clock cycles in one SPI cycle (from falling edge of \overline{CS}) is a multiple of 8, with 8 clocks minimum for daisy-chain mode and 16 clocks minimum for addressable SPI mode. The expected number of clocks is scaled according to CRCEN setting and Burst mode settings. If the number of clock cycles differs from the expected, then the SPI command is not executed and an SPI error is signaled through the \overline{COMERR} pin.

CRC Error Detection on the Serial Interface

CRC error detection of the serial data can be enabled to minimize incorrect operation/misinformation due to data corruption of the SDI/SDO signals. If error detection is enabled, then the MAX14916 and MAX14916A:

- Performs error detection on the SDI data that it receives from the controller, and
- Calculates a CRC on the SDO data and appends a check byte to the SDO diagnostics/status data that it sends to the controller.

This ensures that both the data that it receives from the controller (setting/configuration) and the data that it sends to the controller (diagnostics/status) have a low likelihood of undetected errors.

Setting the CRCEN input high enables CRC error detection. A CRC Frame Check Sequence (FCS) is then sent along with each serial transaction. The 5-bit FCS is based on the generator polynomial $X^5 + X^4 + X^2 + 1$ with CRC starting value = 11111.

When CRC is enabled, the MAX14916 and MAX14916A expect a check byte appended to the SDI data. The check byte has the format as shown in Figure 20.

Table 4.	Valid\	Data	Lanath
Table 4.	vallu	Dala	Lengui

DAISY	CRCEN	R/W BIT	BRST BIT	VALID DATA LENGTH (*)
0	0	1	0	16
0	0	1	1	24 or 32
0	1	1	0	24
0	1	1	1	32 or 40
0	0	0	0	16
0	0	0	1	56
0	1	0	0	24
0	1	0	1	64
1	0	х	х	8xN (**)
1	1	х	х	16xN (**)

^(*) This is the number of CLK rising edges between $\overline{\text{CS}}$ falling and rising edges

^(**) N is an integer number of daisy-chained devices

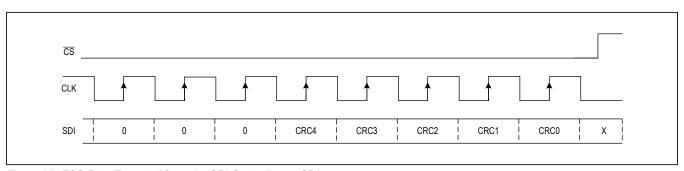


Figure 20. FCS Byte Expected from the SPI Controller on SDI

Compact Industrial Octal 1A/Quad 2A High-Side Switch with Diagnostics

The five FCS bits (CRC_) are calculated on all the data sent in one SPI command including the three "0" in the MSBs of the check byte. Therefore, the CRC is calculated from 8+3 bits up to 56+3 bits in case of burst command. CRC0 is the LSB of the FCS.

The MAX14916 and MAX14916A verify the received FCS. If no error is detected, the MAX14916 and MAX14916A set the OUT_ output switches and/or change configuration per the SDI data. If a CRC error is detected, then the MAX14916 and MAX14916A do not change the OUT_ outputs and/or does not change its configuration. Instead, the MAX14916 and MAX14916A set the COMERR logic output low (i.e., the open-drain COMERR NMOS output transistor is turned on).

The check byte that the MAX14916 and MAX14916A append to the SDO data has the format seen in Figure 21 when the DAISY pin is low.

A1 and A0 are the logic level for A1 and A0 pins while THERR bit is set when a chip thermal shutdown event has occurred.

CRC_ are the CRC bits that the MAX14916 and MAX14916A calculate on the SDO data, including the A1, A0, and THERR bits. This allows the controller to check for errors on the SDO data received from the MAX14916 and MAX14916A.

The CMERR is set when either a SPI or SYNCH pin WatchDog event has occurred.

The THERR bit is set when the chip thermal shutdown occurs. The VERR bit in FCS byte corresponds to the SupplyErr bit in the Interrupt register.

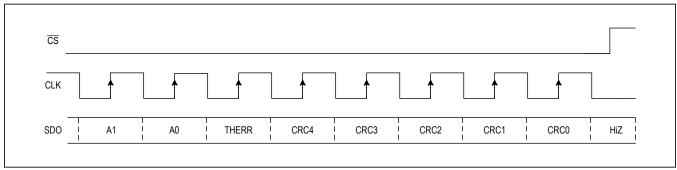


Figure 21. FCS Byte Sent by the MAX14916 and MAX14916A to SPI Controller in Addressable SPI Mode

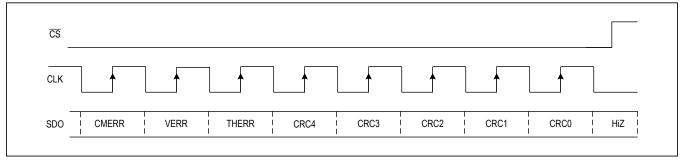


Figure 22. FCS Byte Sent by the MAX14916 and MAX14916A to SPI Controller in Daisy-Chain Mode

Compact Industrial Octal 1A/Quad 2A High-Side Switch with Diagnostics

Register Map

	REGIS- TER ADDRESS	ACCESS TYPE	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
SetOUT	0x00	R/W	On8	On7	On6	On5	On4	On3	On2	On1
SetFLED	0x01	R/W	FLED8	FLED7	FLED6	FLED5	FLED4	FLED3	FLED2	FLED1
SetSLED	0x02	R/W	SLED8	SLED7	SLED6	SLED5	SLED4	SLED3	SLED2	SLED1
Interrupt	0x03	R	ComErr	SupplyErr	ThermErr	ShtVdd- Fault	OWOn- Fault	OWOff- Fault	CurrLim	OverLd- Fault
OvlChF	0x04	R	OVL8	OVL7	OVL6	OVL5	OVL4	OVL3	OVL2	OVL1
CurrLimChF	0x05	R	CL8	CL7	CL6	CL5	CL4	CL3	CL2	CL1
OwOffChF	0x06	R	OWOff8	OWOff7	OWOff6	OWOff5	OWOff4	OWOff3	OWOff2	OWOff1
OwOnChF	0x07	R	OWOn8	OWOn7	OWOn6	OWOn5	OWOn4	OWOn3	OWOn2	OWOn1
ShtVD- DChF	0x08	R	SHVDD8	SHVDD7	SHVDD6	SHVDD5	SHVDD4	SHVDD3	SHVDD2	SHVDD1
GlobalErr	0x09	R	WDErr	SynchErr	ThrmShutd	VddUvlo	VddWarn	VddNot- Good	VA_UVLO	Vint_UV
<u>OwOffEn</u>	0x0A	R/W	OwOffEn8	OwOffEn7	OwOffEn6	OwOffEn5	OwOffEn4	OwOffEn3	OwOffEn2	OwOffEn1
<u>OwOnEn</u>	0x0B	R/W	OwOnEn8	OwOnEn7	OwOnEn6	OwOnEn5	OwOnEn4	OwOnEn3	OwOnEn2	OwOnEn1
ShtVddEn	0x0C	R/W	ShtVdd En8	ShtVdd En7	ShtVdd En6	ShtVdd En5	ShtVdd En4	ShtVdd En3	ShtVdd En2	ShtVdd En1
Config1	0x0D	R/W	LEDCur- rLim	FLatchEn	FiltrLong	FFilterEn	FLED- Strech0	FLED- Strech0	SLEDSet	FLEDSet
Config2	0x0E	R/W	WDTo1	WDTo0	OWOffCs1	OWOffCs0	ShrtVdd Thr1	ShrtVdd Thr0	Synch- WDEn	VDDOnThr
Mask	0x0F	R/W	ComErrM	Supply- ErrM	VddOKM	ShtVddM	OWOnM	OWOffM	CurrLimM	OverLdM

Compact Industrial Octal 1A/Quad 2A High-Side Switch with Diagnostics

SetOUT Register (0x00)

SetOUT	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
Bit Name	On8	On7	On6	On5	On4	On3	On2	On1
POR	0	0	0	0	0	0	0	0
Read / Write	R/W							

On

Set On_ = 1 to close the associated OUT_ high-side switch. Set On_ = 0 to open the high-side switch.

SetFLED Register (0x01)

SetFLED	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
Bit Name	FLED8	FLED7	FLED6	FLED5	FLED4	FLED3	FLED2	FLED1
POR	0	0	0	0	0	0	0	0
Read / Write	R/W							

FLED_

Set FLED_ = 1 to turn on the FLED_ fault LED. Set FLED_ = 0 to turn off the FLED_ fault LED. The FLED_ bits only operate if the FLEDSet bit is set in the Config1 register.

SetSLED Register (0x02)

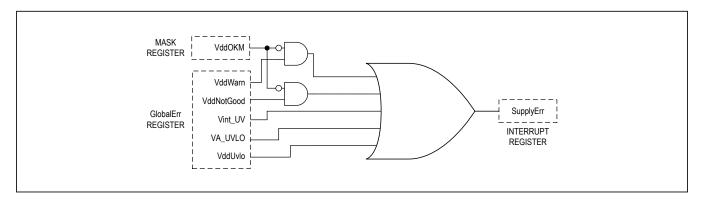
SetSLED	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
Bit Name	SLED8	SLED7	SLED6	SLED5	SLED4	SLED3	SLED2	SLED1
POR	0	0	0	0	0	0	0	0
Read / Write	R/W							

SLED

Set SLED_ = 1 to turn on the SLED_ status LED. Set SLED_ = 0 to turn off the SLED_ status LED. The SLED_ bits only operate if the SLEDSet bit is set in the Config1 register.

Interrupt Register (0x03)

Interrupt	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
Bit Name	ComErr	SupplyErr	ThermErr	ShtVddFault	OWOnFault	OWOffFault	CurrLim	OverLdFault
POR	0	1	0	0	0	0	0	0
Read / Write	R	R	R	R	R	R	R	R


ComErr

ComErr is set = 1 when a watchdog timeout for SPI interface or SYNCH pin is detected. If the errors are latched (FLatchEn = 1), the ComErr bit is cleared when GlobalErr register is read and the event has disappeared.

Compact Industrial Octal 1A/Quad 2A High-Side Switch with Diagnostics

SupplyErr

SupplyErr is the logic OR of the VA_UVLO, Vint_UV and other supply monitoring bits in the GlobalErr register, as shown in the diagram below. If the errors are latched (FLatchEn = 1), the SupplyErr bit is cleared when GlobalErr register is read and the event has disappeared.

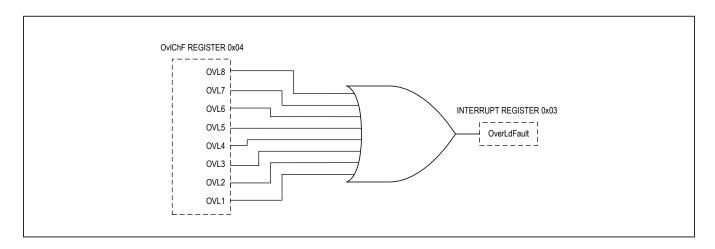
ThermErr

ThermErr is set = 1 after the MAX14916 and MAX14916A enter chip thermal shutdown.

ShtVddFault

ShtVddFault = 1 when a short-to- V_{DD} error was detected on any OUT_. The detailed channel can be found in the ShtVDDChF register.

OWOnFault


OWOnFault = 1 when an open-wire fault in on state is detected on any OUT_. The detailed channel can be found in the OwOnChF register.

OWOffFault

OWOffFault = 1 when an open-wire fault in off state is detected on any OUT_. The detailed channel can be found in the OwOffChF register.

OverLdFault

OverLdFault = 1 when an overload occurs on any OUT_. The detailed channel can be found in the OvlChF register.

Compact Industrial Octal 1A/Quad 2A High-Side Switch with Diagnostics

OvIChF (0x04)

OvlChF	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
Bit Name	OVL8	OVL7	OVL6	OVL5	OVL4	OVL3	OVL2	OVL1
POR	0	0	0	0	0	0	0	0
Read / Write	R	R	R	R	R	R	R	R

OVL_

OVL_ = 1 when a thermal overload is detected on OUT_. All bits can be configured to be real-time or latched (clear on read), depending on the FLatchEn bit setting.

CurrLimChF (0x05)

CurrLimChF	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
Bit Name	CL8	CL7	CL6	CL5	CL4	CL3	CL2	CL1
POR	0	0	0	0	0	0	0	0
Read / Write	R	R	R	R	R	R	R	R

CL_

CL_ = 1 when a current limit is detected on an OUT_ switch while the switch is on. All bits can be configured to be real-time or latched (clear on read), depending on the FLatchEn bit setting.

OwOffChF (0x06)

OwOffChF	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
Bit Name	OWOff8	OWOff7	OWOff6	OWOff5	OWOff4	OWOff3	OWOff2	OWOff1
POR	0	0	0	0	0	0	0	0
Read / Write	R	R	R	R	R	R	R	R

OWOff_

OWOff_ = 1 when an open-wire fault is detected on OUT_ in the off state. All bits can be configured to be real-time or latched (clear on read), depending on the FLatchEn bit setting.

OwOnChF (0x07)

OwOnChF	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
Bit Name	OWOn8	OWOn7	OWOn6	OWOn5	OWOn4	OWOn3	OWOn2	OWOn1
POR	0	0	0	0	0	0	0	0
Read / Write	R	R	R	R	R	R	R	R

OWOn

OWOn_ = 1 when an open-wire fault is detected on OUT_ in the on state. All bits can be configured to be real-time or latched (clear on read), depending on the FLatchEn bit setting.

ShtVDDChF (0x08)

ShtVDDChF	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
Bit Name	SHVDD8	SHVDD7	SHVDD6	SHVDD5	SHVDD4	SHVDD3	SHVDD2	SHVDD1
POR	0	0	0	0	0	0	0	0
Read / Write	R	R	R	R	R	R	R	R

SHVDD

SHVDD_ = 1 when a short-to-V_{DD} fault in the off state occurred on the OUT_ switch. All bits can be configured to be real-time or latched (clear on read), depending on the FLatchEn bit setting.

GlobalErr (0x09)

GlobalErr	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
Bit Name	WDErr	SynchErr	ThrmShutd	VddUvlo	VddWarn	VddNot- Good	VA_UVLO	Vint_UV
POR	0	0	0	1	1	1	1	1
Read / Write	R	R	R	R	R	R	R	R
Latched	Υ	Y	Y	Y	Y	Y	Y	Y

WDErr

WDErr is set = 1 when a watchdog timeout is detected on the SPI interface, if the watchdog function is enabled through the WDTo[1:0] bits. This bit is mapped to the ComErr bit in the Interrupt register.

SynchErr

SynchErr is set = 1 when a watchdog timeout for SYNCH pin is detected, if the SYNCH pin watchdog function is enabled through the SynchWDEn bit. This bit is mapped to the ComErr bit in the Interrupt register.

ThrmShutd

ThrmShutd is set = 1 after the MAX14916 and MAX14916A enter thermal shutdown. This bit is mapped to the ThermErr bit in the Interrupt register.

VddUvlo

VddUvlo bit is set = 1 any time V_{DD} drops below V_{DD_UVLO} voltage threshold. VddUvlo bit can be cleared by reading GlobalErr register only if V_{DD} voltage exceeds the V_{DD} uvlo voltage threshold.

If SupplyErrM bit is 1, V_{DD} falling below V_{DD_UVLO} event triggers the VddUvlo bit and the SupplyErr bit (or VERR bit in SDO signal if daisy-chain mode with CRC operation is selected) but it will not be signaled by FAULT pin.

VddWarn

VddWarn bit is set = 1 any time V_{DD} drops below V_{DD_WARN} voltage threshold. VddWarn bit can be cleared by reading GlobalErr register only if V_{DD} voltage exceeds the V_{DD_WARN} threshold. If VddOKM bit is 1, V_{DD} falling below V_{DD_WARN} event triggers the VddWarn bit, but they will not be signaled by SupplyErr bit and FAULT pin.

VddNotGood

VddNotGood bit is set = 1 any time V_{DD} drops below V_{DD_GOOD} voltage threshold. VddNotGood bit can be cleared by reading GlobalErr register only if V_{DD} voltage exceeds the V_{DD_GOOD} threshold. If VddOKM bit is 1, V_{DD} falling below V_{DD_GOOD} threshold event triggers the VddNotGood bit but they will not be signaled by SupplyErr bit and FAULT pin.

Compact Industrial Octal 1A/Quad 2A High-Side Switch with Diagnostics

VA UVLO

VA_UVLO is set to 1 when the V_A voltage input falls under the V_{A_UVLO} threshold. If VA_UVLO is = 1, it can be set = 0 by reading the GlobalErr register when the V_A voltage exceeds the V_{A_UVLO} threshold.

If SupplyErrM bit is 1, V_A falling below V_{A_UVLO} threshold event triggers the VA_UVLO flag and the SupplyErr bit but it will not be signaled by FAULT pin.

Vint_UV

Vint_UV is set to 1 on initial power-up and after the internal supply to the registers falls to a level where the register contents are lost. This signals that a power-on reset has occurred and informs that all register contents were reset. After power-up, Vint_UV = 1 and can be set = 0 by reading the GlobalErr register.

V_{int} falling below V_{int} UVLO threshold event always triggers the Vint_UV flag, the SupplyErr bit and it will be signaled by FAULT pin and READY pin.

OwOffEn (0x0A)

OwOffEn	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
Bit Name	OwOffEn8	OwOffEn7	OwOffEn6	OwOffEn5	OwOffEn4	OwOffEn3	OwOffEn2	OwOffEn1
POR	0	0	0	0	0	0	0	0
Read / Write	R/W							

OwOffEn_

Set OwOffEn_ = 1 to enable open-wire detection with OUT_ switch in off state. Set OwOffEn_ = 0 to disable open-wire detection on OUT_ switch in off state. If OwOffEn_ = 0, the pullup current source on the corresponding channel is disabled.

OwOnEn (0x0B)

OwOnEn	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
Bit Name	OwOnEn8	OwOnEn7	OwOnEn6	OwOnEn5	OwOnEn4	OwOnEn3	OwOnEn2	OwOnEn1
POR	0	0	0	0	0	0	0	0
Read / Write	R/W							

OwOnEn

Set OwOnEn_ = 1 to enable open-wire detection with OUT_ switch in on state. Set OwOnEn_ = 0 to disable open-wire detection on OUT_ switch in on state.

ShtVddEn (0x0C)

ShtVddEn	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
Bit Name	ShtVddEn8	ShtVddEn7	ShtVddEn6	ShtVddEn5	ShtVddEn4	ShtVddEn3	ShtVddEn2	ShtVddEn1
POR	0	0	0	0	0	0	0	0
Read / Write	R/W							

ShtVddEn

Set ShtVddEn_ = 1 to enable detection of a short-to- V_{DD} on corresponding OUT_ channel. Set ShtVddEn_ = 0 to disable short-to- V_{DD} detection on corresponding OUT_ pin.

Config1 Register (0x0D)

Config1	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
Bit Name	LEDCurrLim	FLatchEn	FiltrLong	FFilterEn	FLED- Strech1	FLED- Strech0	SLEDSet	FLEDSet
POR	0	1	0	1	0	0	1	1
Read / Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

LEDCurrLim

Set LEDCurrLim = 1 to mask the FLEDs signaling current limiting on a channel when the internal FLED control is active (FLEDSet = 0).

When DAISY is high, FLEDs do not show current limiting condition on channel.

FLatchEn

Set FLatchEn = 1 to enable latching of diagnostic fault bits in the OvlChF, CurrLimChF, OwOffChF, OwOnChF, ShtVDDChF registers. When the FLED LEDs are controlled internally (FLEDSet = 0), the LED on-time is not affected by this bit, but has a minimum on-time defined by the FLEDStrech[1:0] bits and is turned off when the fault disappears, if longer than FLEDStrech[1:0] timing.

FiltrLong

Set FiltrLong = 1 to select long blanking time (8ms instead of 4ms) of the diagnostics fault bits in the OwOffChF, OwOnChF, ShtVDDChF. This bit also affects the fault LED turn-on when controlled internally (FLEDSet = 0).

FFilterEn

Set FFilterEn = 1 to enable blanking and filtering of the short-to- V_{DD} , open-wire-on, open-wire-off diagnostic bits in the OwOffChF, OwOnChF, ShtVDDChF registers. If FFilterEn = 0, the diagnostics are all real-time (only filtered by 50µs filter) and filtering is left to application software. The internal fault LED control (FLEDSet = 0) always uses filtering, this cannot be disabled through FFilterEn.

FLEDStrech1, FLEDStrech1

The FLEDStrech[1:0] bits select the minimum on-time for the FLEDs, if controlled internally (FLEDSet = 0), so the eye can catch short events.

FLEDStrech1	FLEDStrech0	MINIMUM LED ON TIME		
0	0	Disable		
0	1	1s		
1	0	2s		
1	1	3s		

When DAISY pin is high the minimum on-time for the FLED is configured to 2s.

SLEDSet

Set SLEDSet = 1 so that the eight status LEDs (SLEDs) are controlled by SetSLED register bits. If SLEDSet = 0, then the eight SLEDs are controlled autonomously by the MAX14916 and MAX14916A.

When DAISY pin is high, the SLEDs are always controlled by the MAX14916 and MAX14916A.

FLEDSet

Set FLEDSet = 1 for the eight fault LEDs (FLEDs) to be controlled by SetFLED register bits. If FLEDSet = 0, then the FLEDs are controlled by the internal fault diagnostics detection: SHVDD_, OWOn_, OWOff_, CL_, OVL_ (if enabled).

When DAISY pin is high, the FLEDs are always controlled by the internal overload detection (OVL).

Compact Industrial Octal 1A/Quad 2A High-Side Switch with Diagnostics

Config2 Register (0x0E)

Config2	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
Bit Name	WDTo1	WDTo0	OWOffCs1	OWOffCs0	ShrtVdd Thr1	ShrtVdd Thr0	Synch- WDEn	VDDOnThr
POR	0	0	0	0	0	0	0	0
Read / Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

WDTo1, WDTo0

The WDTo_ bits enable and set the timeout of the watchdog timer for both SPI and SYNCH.

WDTo1	WDTo0	SPI WATCHDOG TIMEOUT	SYNCH WATCHDOG TIMEOUT
0	0	Disabled	600ms
0	1	200ms	200ms
1	0	600ms	600ms
1	1	1.2s	1.2s

When DAISY pin is high, SPI and SYNCH watchdog timers are both configured to 1.2s and can be enabled by shorting pin A0/WDEN and A1/SYNCWD respectively to $V_{\rm I}$.

OWOffCs1, OWOffCs0

The OWOffCs[1:0] bits select the pull-up current source current magnitude used for the open-wire off detection.

OWOffCs1	OWOffCs0	CURRENT (TYP)
0	0	20μΑ
0	1	100μΑ
1	0	300μΑ
1	1	600µA

ShrtVddThr1, ShrtVddThr0

The ShrtVddThr[1:0] bits select the voltage threshold for Short-to-V_{DD} detection.

ShrtVddThr1	ShrtVddThr0	VOLTAGE (TYP)
0	0	9V
0	1	10V
1	0	12V
1	1	14V

VDDOnThr

Set VDDOnThr = 1 to select VDD_GOOD_R (16V typ) instead of VDD_UVLO_R (9V typ) as the voltage threshold to assert VDDOK pin, which indicates V_{DD} supply is high enough for OUT_ switches to operate normally. VDD_GOOD_R voltage threshold is used if DAISY pin is high.

Mask Register (0x0F)

Mask	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
Bit Name	ComErrM	SupplyErrM	VddOKM	ShtVddM	OWOnM	OWOffM	CurrLimM	OverLdM
POR	1	0	1	1	1	1	1	0
Read / Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

ComErrM

Set ComErrM = 1 to disable SPI and SYNCH pin watchdog timeout (if enabled through WDTo_ and SynchWDEn bits) being signaled on the FAULT output pin. Independent of the ComErrM bit, these conditions will still be shown in the ComErr bit in the Interrupt register and the GlobIF bit in the SDO signal.

If DAISY pin is high, SPI and SYNCH pin watchdog timeout can be enabled by A0/WDEN and/or A1/SYNCWD pins. All watchdog events are signaled on CMERR bit in the SDO signal (available if CRCEN is high) while FAULT pin will not be impacted by CMERR detection.

SupplyErrM

Set SupplyErrM = 1 to disable any supply errors and warnings being signaled on the FAULT output. Independent of the SupplyErrM bit, these conditions will still be shown in the SupplyErr bit in the Interrupt register and the GlobIF bit in the SDO signal.

If DAISY pin is high, supply errors are not signaled on FAULT output and information is available only on VERR bit in SDO signal when CRC byte is enabled.

VddOKM

Set VddOKM = 1 to disable signaling of VddNotGood and VddWarn bits in SupplyErr bit (and hence also the \overline{FAULT} output, if enabled through SupplyErrM). The SupplyErr bit is always active and not affected by the VddOKM bit setting.

If DAISY pin is high, VddNotGood and VddWarn bits do not affect VERR bit in SDO signal.

ShtVddM

Set ShtVddM = 1 to disable per-channel short-to- V_{DD} faults being signaled on the \overline{FAULT} output. If the short-to- V_{DD} detection is enabled in the ShtVddEn register, short-to- V_{DD} conditions are still signaled in the ShtVddFault bit in the Interrupt register and the ShrtVDD bit in SPI SDO data, when they occur.

If DAISY pin is high, short-to-V_{DD} fault detection is disabled.

OWOnM

Set OWOnM = 1 to disable per-channel open-wire-on faults being signaled on the FAULT output. If open-wire-on detection is enabled in the OwOnEn register, open-wire-on conditions will still be signaled in the OWOnFault bit in the Interrupt register and the OWOnF bit in the SPI SDO data, when they occur.

If DAISY pin is high, open-wire-on fault detection is disabled.

OWOffM

Set OWOffM = 1 to disable per-channel open-wire-off faults being signaled on the FAULT output. If open-wire-off detection is enabled in the OwOffEn register, open-wire-off conditions will still be signaled in the OWOffFault bit in the Interrupt register and the OWOffF bit in the SPI SDO data when they occur.

If DAISY pin is high, open-wire-off fault detection is disabled.

CurrLimM

Set CurrLimM = 1 to disable per-channel over-current conditions being signaled on the FAULT output. Independent of the CurrLimM bit setting, overcurrent conditions will always be signaled in the CurrLim bit in the Interrupt register and the CurrLim bit in the SPI SDO data when they occur.

If DAISY pin is high, overcurrent condition is not signaled.

Compact Industrial Octal 1A/Quad 2A High-Side Switch with Diagnostics

OverLdM

Set OverLdM = 1 to disable per-channel overload faults being signaled on the FAULT output. Independent of the OverLdM bit setting, overload faults will always be signaled in the OverLdFault bit in the Interrupt register and the OverLdF bit in the SPI SDO data when they occur.

Applications Information

Inductive Load Turn-off Energy Clamping

During turn-off of inductive loads, the free-wheel energy is clamped by the internal V_{CL} clamps. This energy must be limited to 150mJ (max) at $T_J = +125$ °C and $I_{OUT} =$ -600mA per channel, all channels switching simultaneously. When paralleling OUT channels to achieve higher currents and when the inductive load current exceeds 600mA, the free-wheel energy cannot be dissipated safely by the device. In this case, TVS are required for fast inductive load demagnetization. Either each paralleled output requires a TVS, or one shared TVS can be used with ORing diodes, as shown in the Typical Application Circuit in Figure 25. The TVS clamping voltage must be lower than the difference between V_{CL} voltage and the maximum V_{DD} supply voltage expected in operation. For example, with the maximum $V_{DD} = 32V$ and $V_{Cl} =$ 49V, the clamping voltage of an external TVS should be less than 49V - 32V = 17V. The SM30T15AY or similar is recommended.

Surge Protection

The MAX14916 and MAX14916A are tolerant of $\pm 1.2 \text{kV}$ (1.2 μ s/50 μ s) surges coupled through 40 Ω /0.5 μ F CDN onto the OUT_ pins relative to GND when the V_{DD} pins are protected by a single TVS. Suitable TVS are SMCJ36A, SMC30J40A, SM30T39AY or similar.

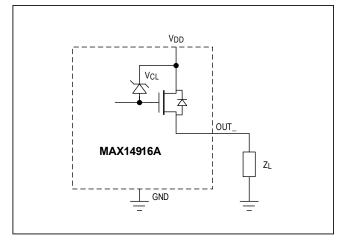


Figure 23. Internal Inductive Load Clamping

RF Conducted Immunity

To ensure that the OUT_ pins do not produce wrong logic conditions while being off, during IEC 61000-4-6 RF immunity testing, connect a 10nF capacitor at each OUT_ to GND.

Reverse Currents into OUT_

If currents flow into the OUT_ pins, the device heats up due to internal currents that flow through the device from V_{DD} to GND. The internal currents are proportional to the reverse current into OUT_. The allowed reverse OUT_ current depends on V_{DD} , the ambient temperature and the thermal resistance. At $25\,^{\circ}\text{C}$ ambient temperature the reverse current into one OUT_ should be limited to 1A at V_{DD} = 36V and 1.5A at V_{DD} = 24V. Driving higher currents into OUT_ can destroy the device thermally.

Typical Application Circuit

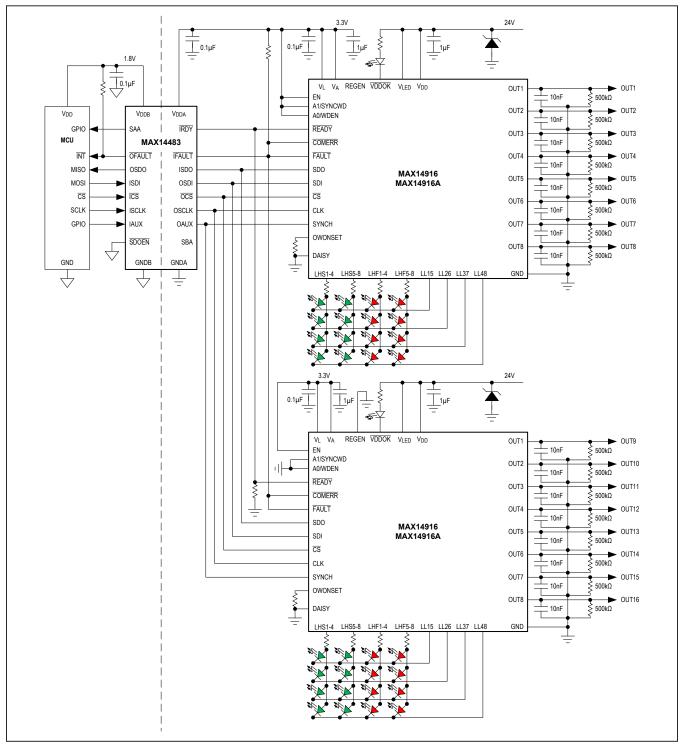


Figure 24. 16-Channel Isolated DO Module with Two MAX14916/MAX14916A Devices in Addressable SPI Mode

Typical Application Circuit (continued)

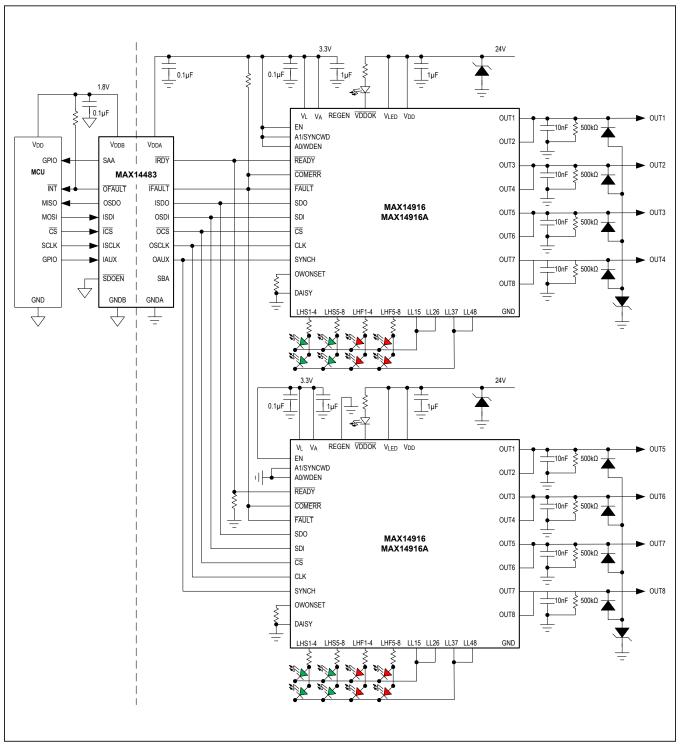


Figure 25. 8-Channel Isolated 2.78A/4A DO Module with Two MAX14916/MAX14916A Devices Using 6-Channel Digital Isolator

Compact Industrial Octal 1A/Quad 2A High-Side Switch with Diagnostics

Ordering Information

PART	TEMP RANGE	PACKAGE	TOP MARKING	LEAD PITCH
MAX14916AFM+T	-40°C to +125°C	6x6 QFN48	MAX14916AFM	0.4mm
MAX14916AFM+	-40°C to +125°C	6x6 QFN48	MAX14916AFM	0.4mm
MAX14916AAFM+T	-40°C to +125°C	6x6 QFN48	MAX14916AAFM	0.4mm
MAX14916AAFM+	-40°C to +125°C	6x6 QFN48	MAX14916AAFM	0.4mm

⁺ Denotes a lead(Pb)-free/RoHS-compliant package.

T Denotes tape-and-reel.

Compact Industrial Octal 1A/Quad 2A High-Side Switch with Diagnostics

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	8/19	Initial release	_
1	6/23	Updated Title, General Descriptions, Benefits and Features, Absolute Maximum Ratings, Package Information, Electrical Characteristics, Typical Operating Characteristics, Pin Description, Detailed Descriptions, Table 1, Table 2, Figure 5 - Figure 9, Figure 10, Figure 11, Figure 15 - Figure 17, Figure 17, Figure 19 - Figure 22, Register Map, Application Information, Typical Application Circuits, Ordering Information	1–40

