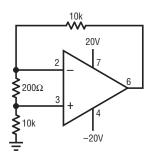


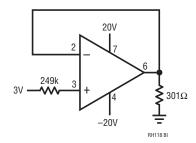
Precision, High Speed Operational Amplifier

DESCRIPTION

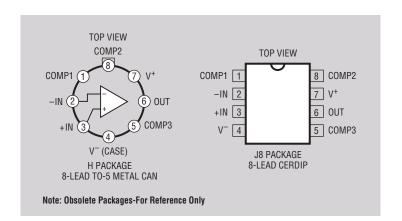
The RH®118 is a precision, high speed operational amplifier which offers wide bandwidth and high slew rate. Unlike many wideband amplifiers, the RH118 is unity-gain stable and has a slew rate of $50V/\mu s$.

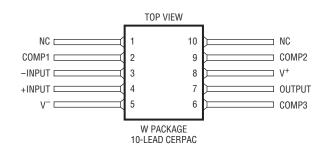

The wafer lots are processed to Analog Devices' in-house Class S flow to yield circuits usable in stringent military applications.

All registered trademarks and trademarks are the property of their respective owners.


ABSOLUTE MAXIMUM RATINGS

Supply Voltage	±20V
Differential Input Current (Note 1)	±10mA
Input Voltage (Note 2)	±20V
Output Short-Circuit Duration	Indefinite
Operating Temperature Range	55°C to 125°C
Storage Temperature Range	65°C to 150°C
Lead Temperature (Soldering, 10 sec	c)300°C


BURN-IN CIRCUIT (Each Amplifier)



0R

PACKAGE/ORDER INFORMATION

Rev. D

TABLE 1: ELECTRICAL CHARACTERISTICS (Preirradiation) (Note 3)

Device is characterized at the TID levels below. Device is production tested at 100kRad(si).

					T _A = 25°(;	SUB-	$-55^{\circ}C \le T_{A} \le 125^{\circ}C$			SUB-	
SYMB0L	PARAMETER	CONDITIONS	NOTES	MIN	TYP	MAX	GROUP	MIN	TYP	MAX	GROUP	UNITS
V _{OS}	Input Offset Voltage					4	1			6	2,3	mV
I _{OS}	Input Offset Current					50	1			100	2,3	nA
I _B	Input Bias Current					250	1			500	2,3	nA
R _{IN}	Input resistance		4	1								MΩ
A _V	Large-Signal Voltage Gain	$V_S = \pm 15V$, $V_{OUT} = \pm 10V$ $R_L \ge 2k$		50			1	25			2,3	V/mV
SR	Slew Rate	$V_S = \pm 15V, A_V = 1$	5	50								V/µs
GBW	Gain Bandwidth Product	V _S = ±15V			15							MHz
	Output Voltage Swing	$V_S = \pm 15V, R_L = 2k$		±12			4	±12			5,6	V
	Input Voltage Range	V _S = ±20V		±16.5			1	±16.5			2,3	V
I _S	Supply Current					8	1					mA
		T _A = 125°C								7	2	mA
CMRR	Common Mode Rejection Ratio			80			1	80			2,3	dB
PSRR	Power Supply Rejection Ratio			70			1	70			2,3	dB

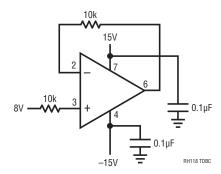
TABLE 1A: ELECTRICAL CHARACTERISTICS (Postirradiation) (Note 6) Device is characterized at the TID levels below. Device is production tested at 100kRad(si).

				10Krad(Si)		20Krad(Si)		50Krad(Si)		100Krad(Si)		200Krad(Si		
SYMBOL	PARAMETER	CONDITIONS	NOTES	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS
V _{OS}	Input Offset Voltage				4		4		4		4		10	mV
I _{OS}	Input Offset Current				50		50		50		50		100	nA
I _B	Input Bias Current				250		250		250		300		400	nA
R _{IN}	Input Resistance		4	1		1		1		0.5		0.5		MΩ
A _V	Large-Signal Voltage Gain	$\begin{array}{l} V_S=\pm 15V,V_{OUT}=\pm 10V\\ R_L\geq 2k \end{array}$		50		50		50		50		25		V/mV
SR	Slew Rate	V _S = ±15V, A _V = 1	5	50		50		50		50		50		V/µs
GBW	Gain Bandwidth Product	V _S = ±15V		15 (Typ)	15 (Typ)	15 (Typ)	15 (Typ)	15 (Typ)	MHz					
	Output Voltage Swing	$V_S = \pm 15V, R_L = 2k$		±12		±12		±12		±12		±12		V
	Input Voltage Range			±16.5		±16.5		±16.5		±15		±12		V
I _S	Supply Current				8		8		8		8		8	mA
CMRR Common Mode Rejection Ratio				80		80		80		80		70		dB
PSRR	Power Supply Rejection Ratio			70		70		70		70		60		dB

ELECTRICAL CHARACTERISTICS (Continued)

Note 1: The inputs are shunted with back-to-back Zeners for overvoltage protection. Excessive current will flow if a differential voltage greater than 5V is applied to the inputs.

Note 2: For supply voltages less than $\pm 15V$, the maximum input voltage is equal to the supply voltage.


Note 3: These specifications apply for $\pm 5V \le V_S \le \pm 20V$. The power supplies must be bypassed with a $0.1 \mu F$ or greater disc capacitor within four inches of the device.

Note 4: Guaranteed by design, characterization or correlation to other tested parameters.

Note 5: Slew rate is 100% tested at wafer probe testing. It is QA sample tested in finished package form.

Note 6: $T_A = 25^{\circ}C$, $V_S = \pm 20V$, $V_{CM} = 0V$, unless otherwise specified. Supply bypassed per Note 3.

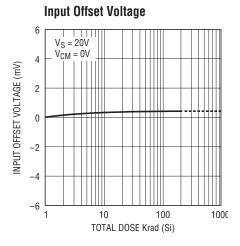
TOTAL DOSE BIAS CIRCUIT

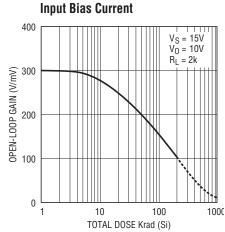
TABLE 2: ELECTRICAL TEST REQUIREMENTS

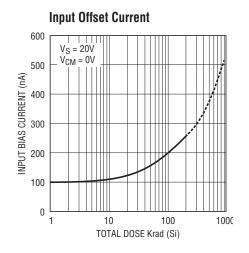
MIL-STD-883 TEST REQUIREMENTS	SUBGROUP
Final Electrical Test Requirements (Method 5004)	1*, 2, 3, 4, 5, 6
Group A Test Requirements (Method 5005)	1, 2, 3, 4, 5, 6
Group B and D End Point Electrical Parameters (Method 5005)	1, 2, 3

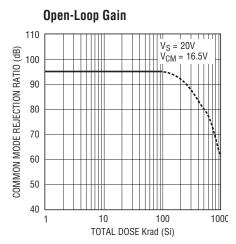
^{*}PDA Applies to subgroup 1. See PDA Test Notes.

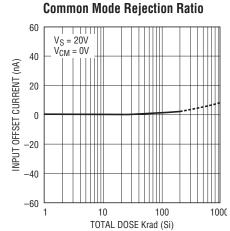
PDA Test Notes


The PDA is specified as 5% based on failures from group A, subgroup 1, tests after cooldown as the final electrical test in accordance with method 5004 of MIL-STD-883 Class B. The verified failures (including Delta parameters) of group A, subgroup 1, after burn-in divided by the total number of devices submitted for burn-in in that lot shall be used to determine the percent for the lot.


Analog Devices reserves the right to test to tighter limits than those given.


REVISION HISTORY


REV	DATE	DESCRIPTION	PAGE NUMBER
С	04/19	Obsolete H + J Package and updating to ADI format	1-4
D	07/23	Updated art title in the Electrical Characteristics section	2


TYPICAL PERFORMANCE CHARACTERISTICS

