

0.01 GHz to 10 GHz, Low Noise Amplifier Die

ADH8410S

1.0 <u>Scope</u>

This specification documents the detail requirements for space qualified die per MIL-PRF-38534 class K except as modified herein.

The manufacturing flow described in the SPACE DIE BROCHURE is to be considered a part of this specification.

This datasheet specifically details the space grade version of this product. A more detailed operational description and a complete datasheet for commercial product grades can be found at http://www.analog.com/HMC8410-DIE

2.0 Part Number

2.1. The complete part number(s) of this specification follows:

Specific Part Number Description ADH8410-000C 0.01 GHz to 10 GHz, GaAs, pHEMT, MMIC, Low Noise Amplifier Die

3.0 Die Information

3.1. Die Dimensions

Die Size	Die Thickness	Bond Pad and Backside Metallization
24 mils x 37.2 mils	4 mils	Au

3.2. Die Picture

- RFIN/V_{GG}1 (DC-coupled and matched to 50 1 Ohms) - See Figure 1 in Section 9.0 for interface schematic
- 2, 3 GND (Ground pads on top of die can optionally be connected to RF/DC GND)
- RFOUT/V_{DD} (DC-coupled and matched to 4 50 Ohms) - See Figure 2 in Section 9.0 for interface schematic

Die Bottom (Must be connected to RF/DC GND)

ASD0016576

Rev. B Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective companies.

ADH8410S

4.0 Absolute Maximum Ratings 1/

Drain Bias Voltage (VDD)	. +7 V dc
Radio Frequency (RF) Input Power (RFIN)	. +20 dBm
Continuous Power Dissipation T _A = 85°C (Derate 7.95 mW/°C above +85°C)	. 0.715 W
Channel Temperature	. 175°C
Storage Temperature Range	. –65°C to +150°C
ESD Sensitivity (HBM)	. Class 1B passed 500 V
Thermal Resistance (Junction to die bottom)	. 125.85°C/W

1/ Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions outside of those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

5.0 Die Qualification

In accordance with class-K version of MIL-PRF-38534, Appendix C, Table C-II, except as modified herein.

- (a) Pre-screen test post assembly required prior to die qualification, to remove all assembly related rejects.
- (b) Mechanical Shock or Constant Acceleration not performed.
- (c) Interim and post burn-in electrical tests will include static tests screened at +25C only.

6.0 Dice Electrical Characteristics

Table I – Die Electrical Characteristics					
			Limits		
Parameter	Symbol	Conditions <u>1/2</u> / Unless otherwise specified	Min	Max	Unit
Quiescent Supply Current	I _{DQ}	No RF in		70	mA
Gain	S21	0.3GHz & 3GHz	17.5		
		5GHz & 8GHz	15.5		dB
		10GHz	13		
		0.3GHz		2.5	
Noise Figure	NF	3GHz		1.6	dB
	INF	5GHz & 8GHz		1.9	
		10GHz		2.2	

Table I Notes:

<u>1</u>/ Limits apply at $T_A = +25^{\circ}$ C, RF In = -10 dBm and $V_{DD} = 5$ V only.

2/ Adjust V_{GG} 1 to achieve I_{DQ} = 65 mA typical

Table II – Electrical Characteristics for Qualification Samples							
					Lin	nits	
Parameter	Symbol	Conditions <u>1/2</u> / Unless otherwise specified		Sub-Group	Min	Max	Unit
Quiescent Supply Current	I _{DQ}	No RF in				70	mA
		0.3GHz & 3GHz			17.5		
Gain	S21	5GHz & 8GHz	RF In = -25dBm	4, 5, 6	15.5		dB
		10GHz			13		
		0.3GHz				2.5	
		3GHz	1	4, 5, 6		1.6	
	NF 8GHz 10GHz	5GHz				1.9	1
Noise Figure		8GHz	1	4,6		1.9	dB
				5		2.4	
		10.011	1	4,6		2.2	1
		TUGHZ		5		2.7	1

Table II Notes:

<u>1</u>/ T_A nom = +25°C, T_A max = +85°C, T_A min = -40°C and V_{DD} = 5 V nom.

2/ Adjust V_{GG}1 to achieve I_{DQ} = 65 mA typical at T_A = -40°C, +25°C and +85°C. Each qualification device shall use the individual V_{GG}1 voltage established at pre burn-in throughout all +25°C qualification testing.

Table III - Burn-in and operating life test delta parameters <u>1/ 2/ 3/ 4</u> /			
Parameter	Symbol	Delta	Units
Quiescent Supply Current	I _{DQ}	± 10	%
Gain	S21	± 1.0	dB

Table III Notes:

 $\underline{1}$ / 240 hour burn in and 1000 hour life test end point electrical parameters.

 $\underline{2}$ / Deltas are performed at T_A = +25°C only.

 $\underline{3}\!/$ Product is tested in accordance with conditions in Table II.

4/ Table II limits will not be exceeded.

ADH8410S

7.0 Die Outline

PAD	DESCRIPTION	PAD SIZE
1	RFIN/VGG1	.0032[.081] X .0060[.152]
2	GND	.0031[.079] X .0037[.094]
3	GND	.0031[.079] X .0037[.094]
4	RFOUT/VDD	.0032[.081] X .0060[.152]

NOTES:

1. ALL DIMENSIONS ARE IN INCHES [MM]

2. DIE THICKNESS IS .004"

3. BOND PAD METALIZATION: GOLD

4. BACKSIDE METALIZATION: GOLD

5. BACKSIDE METAL IS GROUND

6. OVERALL DIE SIZE ±.002"

7. UNLABELED PADS ARE N/A

8.0 Application Notes

Figure 1 and Figure 2 show the equivalent die interface schematics. Figure 3 shows the application circuit that uses optional external bias Tees. Follow <u>MMIC Amplifier Biasing Procedure</u> for proper power up and power down sequence. Power supply decoupling capacitors on both V_{GG} 1 and V_{DD} as close to the device as possible are required for optimal performance.

Figure 4 shows the assembly diagram. Attach the die directly to the ground plane eutectically or with conductive epoxy. To bring the radio frequency to and from the chip, implementing 50 Ω transmission lines using a microstrip or coplanar waveguide on 0.127 mm (5 mil) thick alumina, thin film substrates is recommended (see Figure 5). When using 0.254 mm (10 mil) thick alumina, it is recommended that the die be raised to ensure that the die and substrate surfaces are coplanar. Raise the die 0.150 mm (6 mil) to ensure that the surface of the die is coplanar with the surface of the substrate. To accomplish this, attach the 0.102 mm (4 mil) thick die to a 0.150 mm (6 mil) thick, molybdenum (Mo) heat spreader (moly tab), which can then be attached to the ground plane (see Figure 6).

Figure 1. RFIN/V_{GG}1 Interface Schematic

Figure 2. RFOUT/V_{DD} Interface Schematic

Figure 3. Application Circuit

Figure 4. Assembly Diagram

ADH8410S

9.0 Die Packaging Information

Standard	Alternate	
GP-5 (Gel Pack)	<u>1</u> /	

Note:

1/ For alternate packaging information, contact Analog Devices Inc.

Rev	Description of Change	Date
Α	Production release.	24-September-2019
В	Add exception note to Section 5 and remove Section 7	25-October-2019

© 2019 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective companies. Printed in the U.S.A. 10/2019

www.analog.com