

MAX5478评估板/评估系统

概述

MAX5478评估系统(EV system)由MAX5478评估板(EV kit) 和配套的命令模块接口电路板(CMODUSB)组成。

MAX5478评估板是完全安装并经过测试的PC板,用于评 估50kΩ线性变化、双路数字电位器MAX5478。MAX5478 IC具有内部非易失EEPROM,用于存储上电时滑动端的初 始位置。可通过I²C*兼容的串行接口对EEPROM进行编程 设置,接口传输速率高达400kbps。MAX5478的地址通过 三个地址输入引脚编程设置,提供最多8种地址组合。 MAX5478评估板还可评估MAX5477 (10kΩ)和MAX5479 (100kΩ)双路数字电位器。

该评估板还包括Windows[®]98/2000/XP兼容软件,提供友好的用户界面,用于演示MAX5478的功能。软件采用菜单驱动,提供图形用户界面(GUI),包括控制按钮和滑动条。

利用CMODUSB命令模块,可通过个人计算机(PC)的USB 端口模拟I²C 2线接口。欲获得完全基于PC的评估板,可 定购MAX5478EVCMODU。如果以前曾经从Maxim公司购 买了带有CMODUSB命令模块或I²C兼容2线接口模块的评 估系统,只需定购MAX5478EVKIT即可。 MAX5477/MAX5478/MAX5479

- ◆ 上电时从非易失存储器中调出滑动端位置
- ◆ 2.7V至5.25V单电源供电
- ◆ 器件地址可配置
- ◆ I²C兼容串行接口
- ◆ 易于操作的菜单驱动软件
- ◆ 包括Windows 98/2000/XP兼容软件和 演示PC电路板
- ◆ 可评估MAX5477/MAX5478/MAX5479
- ◆ 完全安装与测试

			_定购信息
PART	TEMP RANGE	IC Package	I ² C INTERFACE INCLUDED
MAX5478EVKIT	0°C to +70°C	14 TSSOP	No
MAX5478EVCMODU	0° C to +70°C	14 TSSOP	Yes

注意: 为评估MAX5477或MAX5479,请申请免费样品,配合 MAX5478EVKIT使用。

注意: MAX5478评估软件随MAX5478EVKIT提供。但是,连接 评估板与计算机时,需要CMODUSB命令模块,使用内部 程序。

MAX5478EVCMODU _____元件列表

PART	QTY	DESCRIPTION
MAX5478EVKIT	1	MAX5478 EV kit
CMODUSB	1	I ² C interface board

*向Maxim Integrated Products, Inc.或其从属许可名义下的相关公司购买I²C元件,将传递Philips I²C许可,允许这些元件用于I²C系统,如果 该系统符合Philips定义的I²C标准规范的话。 Windows是Microsoft Corporation的这种查标

Windows是Microsoft Corporation的注册商标。

M/XI/M

__ Maxim Integrated Products 1

本文是Maxim正式英文资料的译文, Maxim不对翻译中存在的差异或由此产生的错误负责。请注意译文中可能存在文字组织或 翻译错误, 如需确认任何词语的准确性, 请参考 Maxim提供的英文版资料。

索取免费样品和最新版的数据资料,请访问Maxim的主页:www.maxim-ic.com.cn。

DESIGNATION	QTY	DESCRIPTION
C1	1	0.1µF ±10%, 16V X7R ceramic capacitor (0603) TDK C1608X7R1C104K
C2	0	Not installed, ceramic capacitor (0603)
J1	1	2 x 10 right-angle female receptacle
JU1–JU4	4	3-pin headers
JU5	0	Not installed, 2-pin header
JU6, JU7	2	2-pin headers

_MAX5478EVKIT元件列表

DESIGNATION	QTY	DESCRIPTION
R1, R2	0	Not installed, resistors (0805)
U1	1	MAX5478EUD (14-pin TSSOP)
—	6	Shunts (JU1–JU4, JU6, JU7)
_	1	MAX5478 EV kit PC board
_	1	Software disk (CD-ROM), MAX5478 EV kit

元件供应商

SUPPLIER	PHONE	FAX	WEBSITE
TDK	847-803-6100	847-390-4405	www.component.tdk.com

注意: 当与这些供应商联系时请说明您正在使用的产品是MAX5478。

快速入门

所需设备

- 具有USB接口的PC,操作系统为Windows 98/2000/XP
- USB电缆(用来连接PC的USB接口与CMODUSB命令 模块接口板)
- 5V/100mA的直流电源
- 两块电阻表

步骤

MAX5478经过完全安装和测试。按照下面步骤可确保评 估板正常工作。**在完成所有连接之前,不要打开电源**。

- 仔细连接电路板,将MAX5478评估板的20针连接器 (J1)与CMODUSB命令模块接口板的20针P3插头对齐, 然后轻轻按下,将其连接在一起。
- 2) 将CMODUSB命令模块接口的DIP开关SW1推到开启 (ON)位置(在I²C总线接上拉电阻)。确认跳线J1安装在 1-2位置,将命令模块设置成5V工作电压。
- 检查确认MAX5478评估板上跳线JU1、JU2和JU3(器 件地址: 0x5E)的引脚1与2之间安装了短路器。
- 检查确认MAX5478评估板上跳线JU4(写保护禁止)的引 脚2与3之间安装了短路器。

- 5) 检查确认MAX5478评估板的JU6和JU7跳线上未安装短路器。
- 6) 运行光盘上的INSTALL.EXE程序,复制程序文件,并 在Windows 98/2000/XP**开始**菜单中为其创建图标。
- 7) 将5V直流电源连接在MAX5478评估板的VDD和GND 焊盘之间。
- 8) 将其中一块电阻表连接在LA焊盘与LW焊盘之间。
- 9) 将第二块电阻表连接在LB焊盘与WB焊盘之间。
- 10) 打开电源。
- 11)用USB电缆连接PC机的USB接口和CMODUSB命令模 块接口板。注意:不要将电源与命令模块的P1连接器 相连。命令模块通过USB接口供电。
- 12) 点击开始菜单中的图标, 启动MAX5478程序。
- 13) 观察程序自动检测MAX5478地址的过程, 启动主程序。
- 14) MAX5478评估板就绪,可以进行其它测试。

硬件详细说明

MAX5478评估板是完全安装并经过测试的PC板,用于评 估线性变化、双路数字电位器MAX5478的性能。电位器A 和电位器B具有50kΩ的端到端电阻,可对每个电位器滑 动端独立编程,将其设置在256个抽头的某一位置。 MAX5478具有内部非易失EEPROM,用于存储上电时电 位器滑动端的初始位置。在对MAX5478非易失和易失存 储器编程时,I²C兼容的串行接口传输速率可达400kbps。

I²C时钟和数据输入

数字电位器引脚

MAX5478评估板/评估系统

表1. 器件地址配置

			MAX5478	ADDRESS
JU3 (A2) SHUNT PUSITION	JUZ (AT) SHUNT POSITION	JUT (AU) SHUNT POSITION	BINARY	HEXADECIMAL
2-3	2-3	2-3	0101 000Y	0x50
2-3	2-3	1-2	0101 001Y	0x52
2-3	1-2	2-3	0101 010Y	0x54
2-3	1-2	1-2	0101 011Y	0x56
1-2	2-3	2-3	0101 100Y	0x58
1-2	2-3	1-2	0101 101Y	0x5A
1-2	1-2	2-3	0101 110Y	0x5C
1-2	1-2	1-2	0101 111Y	0x5E

MAX5478具有三路可编程输入地址引脚(A0、A1和A2), 可将器件地址设置为8种地址组合(唯一的)中的任意一个。 MAX5478评估板还能够用来评估MAX5477 (10kΩ)和 MAX5479 (100k Ω) 双路数字电位器。另外, MAX5478评估 板也可以评估其它版本的数字电位器,评估这些器件时 需要替换IC。

地址选择 MAX5478评估板具有三条跳线,将MAX5478 A0、A1和 A2地址引脚拉至VDD或GND,用于设置MAX5478从地址。 参考表1: 跳线JU1(A0)、JU2(A1)和JU3(A2)设置 MAX5478从地址。

注意:前7位表示地址。表1中的Y表示I²C的读/写位。I²C 协议规定: 当Y置1时表示读操作, Y置0时表示写操作。 因为数字电位器不会向主设备发送数据,Y始终为0(只写)。

写保护

MAX5478具有写保护输入引脚(WP),用于使能或禁止由 I²C接口写入非易失存储器和易失存储器。可利用跳线JU4 配置WP引脚。参见表2:跳线JU4配置。

可以通过评估板的HA、HB、LA、LB和WA、WB焊盘连 接MAX5478双路数字电位器的高端(HA、HB)、低端(LA、 LB)和滑动端(WA、WB)引脚。后缀A和B表示MAX5478 IC中数字电位器A和数字电位器B对应的焊盘。跳线JU6 和JU7用于连接MAX5478LA和LB引脚与电路板的地、从 而在评估过程中提供一个接地参考端。

MAX5478评估板带有一个2x10直角插头(J1),用于连接

CMODUSB命令模块。引脚J1-7连接MAX5478的时钟引脚

(SCL); 引脚J1-3连接数据引脚(SDA),以便进行I²C通信。

将命令模块的双列直插开关SW1置于ON,使上拉电阻连

时钟和数据输入引脚可通过评估板SCL和SDA焊盘连接。

外部I²C兼容控制器可以与SCL、SDA和GND焊盘连接,

实现与MAX5478 IC的通信。若外部设备在时钟和数据线

上未接上拉电阻,必须在电阻R1和R2焊盘上安装表面贴

装的2.4kΩ(典型值)上拉电阻(尺寸0805),以便进行正确的

接到SCL和SDA信号线,以便进行正确的I²C通信。

I²C通信。GND焊盘也要连接到外部I²C控制器。

表2. 跳线JU4配置(WP)

SHUNT POSITION	WP PIN	WRITE PROTECT
1-2	Connected to VDD	Enabled
2-3	Connected to GND	Disabled

图1. MAX5478评估软件主窗口

电源输入

为正常工作,MAX5478评估板需要在VDD和GND焊盘之 间连接2.7V至5.25电源。评估板也可以使用CMODUSB命 令模块的3.3V或5V电源供电,只需在MAX5478评估板的 JU5上安装一个短路跳线。用命令模块给MAX5478评估板 供电时,通过配置命令模块的VDD选择使用3.3V电源或 5V电源(跳线J1)。

注意: MAX5478评估板工作时,要保证符合数据资料中 规定的绝对额定参数。

评估MAX5477和MAX5479

MAX5478评估板还可评估MAX5477或MAX5479双路数字 电位器。用新的IC替换MAX5478 IC (U1)。MAX5477和 MAX5479与MAX5478引脚/功能兼容。有关器件间差异的 详细说明,请参考MAX5477/MAX5478/MAX5479数据资料。

评估板: MAX5477/MAX5478/MAX5479

む

MAX5478评估板/评估系统

_软件详细说明

注意: 粗体字部分是软件中用户可选的功能。

用户接口面板

用户界面(如图1所示)操作简单。使用鼠标或tab键浏览 GUI控制界面。当用到这些控制功能的任意一个时,产生 正确的I²C写操作,更新MAX5478的内部寄存器。

软件将评估板功能划分成逻辑功能模块。"接口"框显示 当前的Device Address、I²C Clock Speed、评估板状态 和上一次写操作的发送命令和发送数据,这些数据用来 确认适当的器件操作。电位器A和电位器B控制框用于改 变滑动端位置,并将数据从易失存储器传递到非易失存 储器,反之亦然。

MAX5478评估软件提供一些附加功能,简化操作。 Automatic Diagnostics连续检测接口板和MAX5478评估 板,确保所有的连接及器件正常工作。上述功能在I²C总 线上建立操作。Silence I²C Activity检验框可减少I²C总线 对MAX5478评估板的操作,以便触发示波器。检查 Wipers A and B检验框,能够向两个电位器同时发送相同 的数据命令,并同时使能两个数字电位器的控制。使用 Factory Reset按钮将两个电位器的易失和非易失存储器 置为中间值(滑动端位置=127)。

软件启动

启动过程中,MAX5478评估板软件自动检索CMODUSB和 MAX5478评估板。若找到接口板和MAX5478评估板,状 态指示器会有显示。若没有找到接口板,检查命令模块 和USB电缆连接是否正确、评估板供电是否正常,并点击 重试连接信息框上的YES按钮。

在未连接CMODUSB状态下尝试启动软件时,点击重试连接信息框中的NO按钮,会浏览到没有任何有效功能的GUI。在正确连接了命令模块和评估板后重新启动软件,以便正常工作。

滑动端A和B的位置

电位器A和B控制框内的trackbar用来在H_端和L_端之间 调节滑动端位置。使用鼠标和方向键或page-up/page-down 键可以移动trackbar,在256个点之间设置滑动端。也可 以通过在Volatile编辑区内输入0至255之间的数字改变滑 动端位置。Trackbar或Volatile编辑区用来改变写入易失 存储器的数据,一旦发出数据即可更新滑动端的位置。 非易失存储器的数据保持不变。滑动端位置显示在 Volatile编辑区。顶部Volatile编辑区显示相对于H_端的位 置,底部Volatile编辑区显示相对于L_端的位置。在评估 板上电过程中,非易失存储器的数据(滑动端位置)传递给 易失存储器,并更新滑动端A和滑动端B的位置。初始化 后,Volatile和Non-Volatile编辑区显示为"??",这是因 为MAX5478没有向主机发送数据。

非易失存储器编程

Non-Volatile编辑区可用来对数字电位器的非易失存储器 进行编程。当对非易失存储器写数据时,易失存储器和 滑动端的位置仍然保持不变。Non-Volatile编辑区可以输 入的数字位置为0至255。顶部Non-Volatile编辑区显示相 对于H_端的位置,底部Non-Volatile编辑区显示相对于L_ 端的位置。

易失/非易失数据传输

电位器A和电位器B控制框包含了VREG->NVREG和 NVREG->VREG两个按钮,它们分别用来从易失存储器 向非易失存储器、或从非易失性存储器向易失存储器传 送数据。点击VREG->NVREG时,易失存储器的当前数 据传递给非易失存储器。点击NVREG->VREG时,非易 失存储器的当前数据传递给易失存储器,同时更新滑动 端位置。当点击VREG->NVREG和NVREG->VREG时, 评估软件数据发送指示器将显示发送数据中最后的已知 数据。这些命令不向器件发送任何新的数据,因为这些 命令传输的数据已经包含在易失和非易失存储器中。有 关WP被使能或禁止时VREG和NVREG的状态可参考表3。

表3. VREG和NVREG的写保护状态

COMMAND	WRITE PROTECT DISABLED (WP = 0)	WRITE PROTECT ENABLED (WP = 1)
Write to the volatile memory VREG	I ² C data is written to VREG. Wiper position updates with I ² C data. No change to NVREG.	Copy NVREG to VREG. Wiper position updates with NVREG data. No change to NVREG.
Write to the nonvolatile memory NVREG	No change to VREG or wiper position. I ² C data is written to NVREG.	No change to VREG or wiper position. No change to NVREG.
Copy NVREG to VREG	Copy NVREG to VREG. Wiper position updates with NVREG data. No change to NVREG.	Copy NVREG to VREG. Wiper position updates with NVREG data. No change to NVREG.
Copy VREG to NVREG	Copy VREG to NVREG. No change to VREG or wiper position.	No change to VREG or wiper position. No change to NVREG.

注意: WP = 1时, MAX5478评估软件可能显示不正确的存储器数据, 因为电位器是只读器件。

接口

启动过程中,MAX5478评估软件利用八个可能的地址自动检索MAX5478。若软件找到MAX5478数字电位器,状态指示器会显示MAX5478正在工作中;否则,在状态指示器中显示没有找到MAX5478,Device Address设置为"??"。选择Device Address组合框中的Auto Detect选项,用于搜索器件地址。

利用I²C Bus Speed组合框将总线速率设置为400kHz或 100kHz。

I²C采样命令

与MAX5478评估板通信有两种方式:一种是通过标准的 用户接口面板(图1);另一种是通过低级I²C命令,这需要 在主程序Options菜单中选择**2-Wire Interface Diagnostic** (图2)选项,弹出允许I²C操作的**选择**窗口,如Read Byte 和Write Byte。不能使用Read Byte,原因是MAX5478不 能主动向主机发送数据。为中止标准的用户接口操作, 使其不要覆盖人工设置值,请不要使用MAX5478主程序 的Automatic Diagnostics检验框,以关闭更新计时器。

注意:为确保故障写保护功能,请在WP置高(WP=1)之前,将数据写入受保护的非易失寄存器和易失寄存器。 释放WP(WP=0)、发送无效的I²C命令(如单字节地址轮 寻)能够将无效数据装载到易失寄存器,并改变滑动端位 置。为保证可靠操作,须使用有效的3字节I²C命令。 I²C对话框中的数字可以是二进制数、十进制数或十六进 制数。十六进制数要加前缀\$或0x;二进制数则必须写成 8位数字,如图2所示。图2给出了一个简单的SMBus™写 字节操作例子,该操作利用2线接口诊断。在这个例子中, 软件对器件(器件地址为0x5E)中地址为0x11的寄存器(电位 器A易失性存储器)写人数据0xB8。通过上述数据操作可 以将MAX5478的滑动端A置为113。

一般问题排查

问题:软件报告未能找到电路板。

- CMODUSB命令模块的电源LED (LED1)是否点亮?
- USB通信电缆是否连接?
- Windows即插即用功能是否检测到电路板?打开控制面板,选择系统,然后打开设备管理器,找到指向USB的设备节点。如果USB的设备节点显示"unknown device"将该节点删除。因为它阻止重试即插即用设备。

问题:无法发现被测设备(DUT)。

- MAX5478评估板是否连接电源?
- SCL和SDA信号是否通过适当的电阻(2.4kΩ典型值)上拉 到VDD? CMODUSB命令模块的双列直插开关SW1接通 板上电阻,必须在I²C总线接上拉电阻。
- 若用跳线连接,检查SCL和SDA信号是否接反?是否漏 掉了地返回端?

SMBus是Intel Corporation的商标。

Connection 2 wind intended Logging Device Address Target Device Address: 0x5E 0 1 0 1 1 1 1 r/w Hunt for active listeners General commands EEPROM data dump SMBus register watch Low Level commands Command (SMBus Protocols, Raw Block Read/Write, EEPROM Read/Write) Image: Command (SMBus Protocols, Raw Block Read/Write, EEPROM Read/Write) Image: Command (SMBus Protocols, Raw Block Read/Write, EEPROM Read/Write)	ners
Target Device Address: 0x5E 0101111 r/w Hunt for active listeners General commands EEPROM data dump SMBus register watch Low Level commands Command (SMBus Protocols, Raw Block Read/Write, EEPROM Read/Write) Image: Command (SMBus Protocols, Raw Block Read/Write, EEPROM Read/Write)	ners
General commands EEPROM data dump SMBus register watch Low Level commands Command (SMBus Protocols, Raw Block Read/Write, EEPROM Read/Write)	
General commands EEPROM data dump SMBus register watch Low Level commands Command (SMBus Protocols, Raw Block Read/Write, EEPROM Read/Write)	
Command (SMBus Protocols, Raw Block Read/Write, EEPROM Read/Write)	
11. CMDus) (riteDute[add: end date0]	
Command byte: 0x11 🔹 Data Out: 0x88 🔹	-
Byte count: 1 Data In: ?	

图2. 简单的SMBus写字节操作

图4. MAX5478评估板元件摆放位置—元件层

图5. MAX5478评估板布局—元件层

图6. MAX5478评估板布局—焊接层

MAXIM北京办事处

北京8328信箱 邮政编码100083 免费电话: 800 810 0310 电话: 010-6211 5199 传真: 010-6211 5299

Maxim不对Maxim产品以外的任何电路使用负责,也不提供其专利许可。Maxim保留在任何时间、没有任何通报的前提下修改产品资料和规格的权利。

_____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600

10

MAXIM 是 Maxim Integrated Products, Inc. 的注册商标。