

克服汽车信息娱乐系统设计难 题现在变得容易了

解决许多相关的传统问题

作者: Steve Knoth,高级产品市场工程师; George Barbehenn,高级应用工程师; Jeff Marvin,设计中心经理,凌力尔 特公司电源产品部

在美国,AM/FM 收音机仍然非常受欢迎;不过,简单车载收 音机日子已经一去不复返了,取而代之的是全新的汽车信息娱 乐系统。您不再会像以往那样在通勤的路上拨弄几个旋钮和观 看模拟显示屏来获知信息。

女口今,我们可以不费吹灰之力地通过汽车信息娱乐 系统掌握大量的信息并尽情享受丰富多彩的娱乐 项目。技术与产品的广泛进步,例如:触摸屏、数字 音频广播(DAB)、蓝牙通信、数字和高清晰度电视 (HDTV)、卫星收音机、集成型蜂窝电话、CD/DVD/ MP3 播放器、全球定位系统(GPS)导航和视频游戏系统 等,已经在汽车之中营造了一个成熟的娱乐中心!

此类信息娱乐系统的核心是一个复杂的微处理器。 飞思卡尔(Freescale)、英特尔(Intel)、ARM 和其他 公司提供了大量的高效率微处理器,此类仍在不断发展壮 大的微处理器专为给众多无线、嵌入式和网络应用提供低 功耗和高性能处理而设计。这些产品的初衷是使原始设备 制造商(OEM)能够开发出体积较小、成本效益性更佳 并具有长电池使用寿命的便携手持式设备,同时提供增强 型处理性能以运行多功能多媒体应用程序。近来,对这种 高效率和处理性能组合的需求已扩展到了非便携式应用领 域。因此,汽车信息娱乐系统及其他嵌入式应用也要求类 似的效率和处理性能水平。然而在所有的场合中,为了正 确地控制和监视微处理器的电源系统、并确保这些处理器 的全部性能优势均能得以实现,高度专用的高性能电源管 理伙伴 IC 将是必不可少的。

汽车PMIC所面临的挑战

面向汽车应用的电子系统设计颇具挑战性, 究其原

因是很多的,包括宽工作温度范围、严格的 EMC 和瞬态 要求、以及汽车 OEM制造商所要求的高质量水准。我们 从宽工作温度范围开始说起,电源管理 IC 面临着来自两 个方面的挑战。首先是功率转换,即使在拥有高效率的情 况下也必定要消耗一定量的功率。当多个 DC-DC 和 LDO 稳压器集成在单个器件中时,其组合功率耗散会相当大, 轻易就能超过 1W。诸如 6mm x 6mm 40 引脚 QFN 等典 型PMIC封装具有一个 40℃/W 的热阻,因而导致结温升 幅超过 40℃。如果再把第二项挑战(即:宽工作环境温 度)考虑进去,那么PMIC的最大结温常常超过 125℃。即 使在车身电子中(而并非引擎罩下),密封塑料电子控制 模块内部的环境温度也有可能达到 95℃。由于这些温度 方面的难题,许多针对 85℃ 甚至 125℃ 温度条件报订额 定指标的PMIC都不足以在高温环境中持续操作。

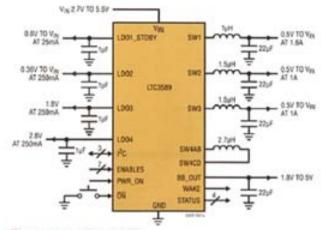
如需在高环境温度条件下运作一个集成型电源管理 器件,则另一个关键之处是器件必需监视其自身的内部芯 片温度,并在结温即将达到过高水平时发出报告,以便系 统能够就如何降低负载的供电功率做出机智灵活的决策。 系统软件可通过关断不太关键的功能电路或降低处理器和 其他高功率功能电路(例如:显示器和网络通信)的运行 性能来实现上述目标。

如今,在汽车仪表板的内部挤满了形形色色的电子 线路与零组件。而且,它还有可能被塞进了从蓝牙到基 于蜂窝电话的网络连接等无线通信功能电路。因此,假 如要在这个散热条件严重受限的环境中装入新的组件, 这些新组件就不能产生过大的热量或 EMI,这一点很重 要。这里的电磁兼容性(EMC)要求十分严格,涉及辐 射和传导发射、辐射和传导抵抗力或敏感度、以及静电 放电(ESD)。如欲拥有满足所有这些要求的能力,那么 PMIC设计的诸多性能方面都将受到影响。其中有些影响 是简单直接的,比如:DC-DC 开关稳压器必须工作于一 个远远超出 AM 无线电频段的固定频率。然而,DC-DC 转换器中另一个常见的辐射发射源则来自于其内部功率 FET 的开关边缘速率。

当今的许多嵌入式系统和先进处理器都需要在电源 起动及施加至各种不同电路时执行受控和精心设计的排 序。提供系统灵活性和简单的排序方法不单能简化系统设 计,还将确保系统可靠性并允许单个PMIC处理更多的系 统,而不仅仅局限于满足某种特定的处理器要求。

概括起来,汽车信息娱乐系统设计人员所面临的主 要难题包括:

 在功率耗散与多个开关稳压器和 LDO 的高集成度 之间的权衡


- 监测结温
- 辐射发射和传导发射抵抗力
- 大的电压瞬变和极端温度
- 管理电源排序
- 尽量缩减解决方案尺寸和占板面积

一款简单的解决方案

历史上,许多现有的PMIC尚未拥有处理这些新式系 统和微处理器的必要功率。对于任何旨在满足上述汽车 电源管理 IC 设计限制条件的解决方案来说,其必须同时 具备高集成度(包括高电流开关稳压器和 LDO)、宽工 作温度范围、电源排序、关键参数的动态 I^C 控制和"难 以实现"的功能构件(例如:降压·升压型稳压器)。此 外,具有高开关频率的器件还可缩减外部组件的尺寸,而 陶瓷电容器则能降低输出纹波。虽然输入电压通常取自经 过预先调节的系统或电池电压,但此类 IC 还必须拥有适 应严苛汽车环境的能力,包括辐射发射抑制。

一款适合当今信息娱乐系统的高功率 PMIC

LTC[®]3589-1 和 LTC3589-2 是完整的电源管理解决方 案,适合基于 ARM 的处理器和先进的便携式徽处理器 系统。这些器件包含三个用于内核、存储器和 SoC 电源 轨的同步降压型 DC/DC 转换器、一个用于 I/O 的同步降 压-升压型稳压器、和三个用于低噪声模拟电源的 250mA

图1: LTC3589 简化方框图。

LDO 稳压器(见图 1)。一个 I'C 串行端口用于控制稳压 器使能、输出电压电平、动态电压调节和转换速率、操作 模式及状态报告。稳压器启动的排序操作通过按期望的次 序将其输出连接至使能引脚或通过 I'C 端口来完成。系统 上电、断电和复位功能受控于按钮接口、引脚输入或 I'C 接口。电压监视器和有源放电电路可在下一个使能序列之 前确保一个干净的断电,另外,选定的稳压器可以免除用 于电源的按钮控制(例如,存储器,当其必须在待机模式 中保持运行时)。LTC3589 以 8 个独立电源轨、恰当的功 率值、以及动态控制和排序支持 i.MX、PXA 和 OMAP 处 理器。其他特点包括诸如 VSTB 引脚等提供的接口信号, 该引脚同时在多至 4 个电源轨上于设定的运行和备用输出 电压之间切换。该器件采用扁平 40 引脚 6mm x 6mm 裸 露衬垫 QFN 封装。

LTC3589 能够解决上述的汽车信息娱乐系统设计难 题。LTC3589HUJPMIC可提供具 -40℃至 +150℃ 额定结温 的高温(H级)器件选项,其可轻松满足汽车的高温工作 要求。该 IC包括一个专门用于结温监测的热告警标记和 中断输出,同时还具有一种过热停机保护功能,可在功率 耗散处置不当或发生严重故障的情况下提供可靠的硬件保 护。

LTC3589 PWM 开关频率特别修整至 2.25MHz (其保 证范围介于 1.8MHz 和 2.6MHz 之间)。另外,也可以将 稳压器设定为强制连续 PWM 操作模式,以阻止执行脉冲 跳跃或突发模式 (Burst Mode[®])操作,即使在轻负载时 也不例外。这不仅保持了频率的固定,而且还降低了 DC-DC 输出电容器上的电压纹波。

抑制辐射和传导发射

LTC3589 拥有一项特殊的功能,其允许用户专门为了

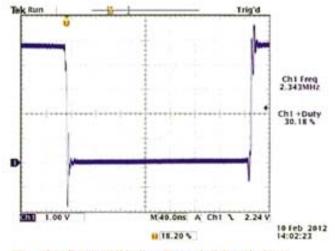


图2: 降压稳压器开关操作(具 ins 上升和下降时间)。

降低辐射而减缓开关边缘速率。可通过选择合适的边缘速 率以达到"既满足辐射标准要求、又可尽量降低开关损 耗"的目的,这有助于优化功率转换器效率。LTC3589中 的3个降压型开关稳压器均具备该边缘速率控制功能。

此外,还有 4 个需要关注的内置于 IC 的开关稳压器 以及相关的电抗器件。一种可行的方法是把 LTC3589 所 在的区域屏蔽起来以防止 EMI 辐射。除了昂贵和笨重之 外,此方法还未能解决由任何有可能连接至电源区域的 导线所造成的污染问题。更好的做法是抑制辐射源和消 除天线。

辐射源抑制通过采用合理的布局/组件选择以避免产 生射频能量。必需使用屏蔽式电感器,并将这些电感器 布设在比输出电容器距离 LTC3589更远的地方。这是因 为 AC 电流沿着 LTC3589 → 电感器 → 输出电容器 → 地 → 返回 LTC3589 的路线循环流动。由此也可以明显地看 到,应使用宽阔的走线(最好是区域填充)将输出电容 器的地连接至 LTC3589 的地、以及 PVIN 输入去耦电容器 的地。

LTC3589 还提供了几种用于辐射源抑制的方法。降压 稳压器上的开关转换速率可通过 I²C 在 1ns 至 8ns 之间调 节。由于这些降压稳压器是同步型的,因而上升和下降时 间均处于受控状态。图 2 示出了上升和下降时间为 1ns 时 的开关操作曲线图。

图 3 为具有 8ns 上升和下降时间的开关操作曲线 图。由图可见,当转换时间为 8ns 时,转换操作时的振铃 极大地减小了。

除了开关时间控制之外,LTC3589 还提供了一些其 他的 EMI 抑制方法。降压稳压器的频率可在 2.25MHz 至 1.125MHz 的范围内改变。而且,为了最大限度地抑制输

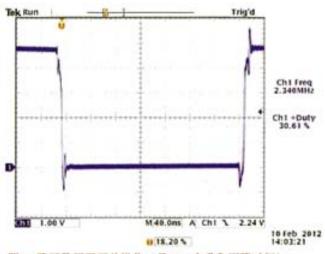
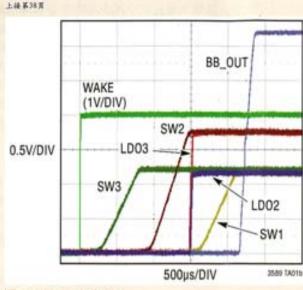


图3: 降压稳压器开关操作(具 8ns 上升和下降时间)。

入纹波(该纹波最终会通过电源输入配线辐射),降压稳 压器可在两个不同的相位时钟之间交错运作。


LTC3589 能提供超过 10W 的可观功率。这会导致相 当大的循环电流,因此必须为该电流的循环提供一条不同 断的通路。特别是接地平面中的缝隙,它会使大的循环电 流围绕其而流动,从而产生缝隙天线。但是,诸如换层等 其他障碍物会给 EMI 特征信号提供一些能量,故应尽量 减少。理想情况是,顶层和底层应全部(或大部分)为接 地平面,信号层则设在内部。这常常是不切实际的,于是 有些设计思路自然会专注于怎样在布局开始之前连接接地 平面。例如:把LTC3589 置于 PCB 上的一角或凸处就不 是好主意。这将使得接地平面的正确布线变得非常困难。 而且,先进行 LTC3589 的高循环电流区域的布线是合适的 做法,可确保尽可能优越的布局。

倘若能以辐射源抑制和天线消除原理以计划和执行 EMI 控制,就可以创建一个具有优良 EMI 性能的满功率 系统,而不会增加产品成本或重量。

其他的重要特点

LTC3589 完全符合 4kV HBM、200V MM 和 1.5kV CDM 的汽车 ESD 要求,这是在汽车组装过程中趋近零 缺陷的另一项关键性的要求。此外,该 IC 还具有非常低 的待机电流消耗(通常为 9 µ A),这一特性合乎汽车导 航、防盗和安全系统的要求,此类系统必须保持对用于感 知时间的实时时钟电路的连续供电。

最后,LTC3589 可支持简单和有效的电源排序, 其可通过串行通信或引脚搭接(按照期望的顺序将电 源输出电压连接至使能引脚)来处理。在内部对每个使 能动作进行了 200 µ s 的延迟,以进一步错开启动序列 74#44用

图4: LTC3589启动序列。

的时间。该特性由精准的低电压使能门限提供支持, 因此排序可以在电源电压低至 0.55V 的情况下进行。 另外,还对每个电源电压输出实施了软起动,以限制 浪涌电流并实现干净的电压转换。每个稳压器输出包 括一个内部下拉电阻器,该电阻器在稳压器输出停用 时进入工作状态,以保证受控放电以及下一个接通序 列的低起点。见图 4。

结论

与父辈们昔日的座驾相比,如今的汽车取得了长足 的进步。简单的 AM/FM 收音机已经让位于最新的技术 成果,例如:卫星收音机、触摸屏、导航系统、蓝牙、 HDTV、集成型蜂窝电话、媒体播放器和视频游戏系统 等。而且,通过取代分立型电源 IC 组件或过度集成的传 统大型 PMIC(即;带有音频、编解码器等),系统设 计人员将能够采用新一代的紧凑型 PMIC,此类PMIC集 成了关键的电源管理功能,旨在以较小和较简单的解决 方案来实现新的性能水平。高性能的移动处理器通常具 有一组独特的电源要求,包括多个大电流和低噪声电压 轨、可编程排序和动态 I²C 调节。这些高端处理器最初是 为手持式应用而开发的,但如今正被部署于非便携式和 嵌入式系统(比如:汽车信息娱乐系统)中。

凭借诸如由凌力尔特提供的 LTC3589-1 和 LTC3589-2PMIC等新产品,系统设计人员将能够在不断 扩大的应用领域中充分利用来自 Freescale、Marvell、 Samsung 和其他公司的新型处理器所拥有的全部节能和 性能优势。LTC3589 解决了许多与汽车信息娱乐系统设 计相关的传统问题,从而改善了新式汽车的驾乘体验。 我们敢肯定,这就是父辈们当初希望在自己的座驾中拥 有而未能如愿的!