

继无铅专题之后,《今日电子》杂志推出有关节能的系列文章,重点讨论如何利用半导体技术 提高能源,开发和利用新能源。欢迎业界厂商和节能方面的专家投稿。

成本优化的太阳能供电公共服务基础设施

转向更加环保的解决方案是当前的 一种趋势, 与这种趋势一致的是自助维 持运行的太阳能供电基础设施开始在全 世界采用。为了改进客户服务、便利性 和安全性,具有夜间照明和无线通信能 力的公共服务站数量日益增多。有照明 和可实时提供到达时间信息的公交站正 在北美出现。太阳能供电售票亭也正在 欧洲出现。在无法具成本效益地建造电 力及有线通信基础设施的偏远地区,也 可提供这类设施。这类设施都必须能进 行无线通信,以执行各自的功能。概念 验证已经有了,但是我们怎样才能优化 系统内的电源网络, 以最高效率利用可 得到的太阳光,从而最大限度地延长运 行时间并最大限度地降低成本?

太阳能电池工作特性

太阳能电池板产生能量的多少与 接收到的光照量成正比。云、树木、灰 尘、太阳能电池板的表面积以及太阳的 旋转都会产生影响,这些影响可能使可 用来发电的光照量产生极大的波动。加 之太阳能电池具有高的源阻抗特性,所 以在负载试图抽取相对大的恒定电流 时,大多数情况下,可能在几段时间内 会遇到对负载、充电器和电池无电可供 的情况。因此,必须应用一种电路,以 仔细控制电流,并相应地最大限度提高 太阳能电池供给充电单元的功率。

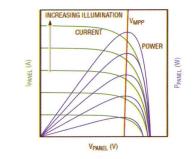


图1 典型太阳能电池板的输出电流和功率随 输出电压变化的曲线

太阳能电池板的典型输出电流和输 出电压特性如图1所示。这里出现了一 个有趣的趋势,即就给定太阳能电池板 而言,不管照明条件如何,当输出电压 处于一个相对恒定的电压V_{MPP}时,太阳

能电池板会提供最大输 出功率。通过查看感兴 趣的太阳能电池板的技 术文件,可以找到电压 V_{MPP}。同时,也可以用 一种很好的方法来独立 验证V_{MPP}数值,通过在 同样的照明条件下逐渐 增大或减小负载,画出 如图1所示的那种I-V曲 线,而让太阳能电池板

凌力尔特公司 Willie Chan

节能

以各种不同的角度面对太阳,就可以非 常容易地形成各种照明条件。

题特写:

仅查看一个真实的太阳能电池板性 能曲线,理解不了在电压等于V_{MPP}时 抽取功率的重要性。图2中的数据是在 睛朗的天空下,在凌力尔特公司位于美 国加利福尼亚州米尔皮塔斯的公司园区 内,用一个自动负载箱和直接面对太阳 的太阳能电池板情况下,在1分钟时间 内收集的。如该图所示,在阳光直射的 情况下,一个不受控制的负载可能使得 净输出功率在低于2~47W的范围内变 化。如果有可能保持太阳能电池板的输 出电压约为恒定的13V,那么我们就可 以保证向负载提供最大功率。可是这个 任务怎样才能完成呢?

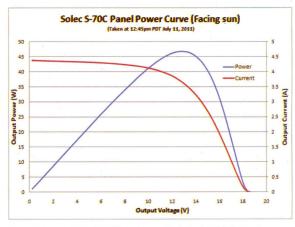


图2 Solec S-70C太阳能电池板:输出电流随输出电压 变化的曲线

专题特写:节能

优化太阳能电池的功率

利用太阳能发电的成本仍然高于 煤、天然气等传统能源,部分原因是太 阳能电池的价格很高。尽管每瓦的价 格在下降,但SolarBuzz.com于2011年 7月发布的一份研究报告显示,视批量 和技术的不同而不同, 以每瓦峰值功率 发电量计算,太阳能电池的价格仍然处 于0.96~2.54欧元之间。如前所述,非 理想的太阳照射条件常常妨碍太阳能电 池板以峰值发电量工作。此外,就太阳 能供电应用而言,太阳能电池板和负载 (在电压不等于V_{MPP}时工作)之间任何潜 在的阻抗失配都必须考虑,而且在计算 太阳能电池板的发电量时要包括这个因 素, 以将这个因素的影响加入到系统的 设计中。随着失配的降低,在实现同样 的功率输出时,太阳能电池板的尺寸和 价格也会减小和降低。

减少阻抗失配的一种简便的方法 是在太阳能电池板的输出与负载之间 使用一个最大峰值功率跟踪(MPPT)电 路。特别之处是,该电路可改变电流负 载以保持电压在V_{MPP}。这种电路可以采 用分立(使用大量的组件)或集成于一个 器件(如LTM8062开关 µ Module电池充 电器)的方式来设计。LTM8062所提 供的MPPT是一种简单的解决方案,可

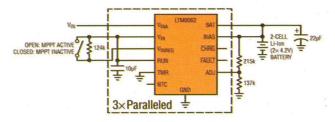


图3 最大充电电流为6A时, MPPT有效性的测试电路原理图

利用单个电阻器进行调节以确保能够在 相差很大的照明条件下向负载输送最大 的功率。通过比较两款相同配置方案的 输出功率,可以最好地展现MPPT电路 的有效性,两款方案均采用一块Solec S-70C太阳能板,其一启用了MPPT, 另一个则停用了MPPT,后者可通过将 LTM8062的V_{INREG}引脚电平拉至V_{IN}来 实现。测试电路原理图在图3中给出。

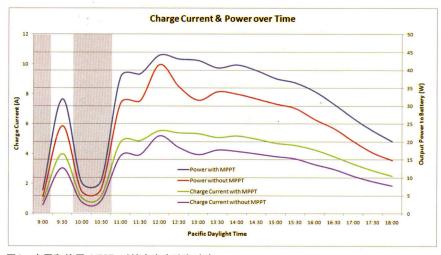
能量存储: 电路比较组件和配置

LTM8062是一款高效率的集成式 恒定电流/恒定电压(CC/CV)降压型开 关电池充电器解决方案,在4.95~32V 的输入电压范围内工作。高达18.8V的 用户可编程电池浮置电压允许该器件 支持一个由多达8节密封铅酸电池、4 节锂离子或锂聚合物电池或者5节磷酸 铁锂(LiFePO₄)电池组成的电池组。与 业内其他公司所建议并由超过10个组 件组成的分立式解决方案相比,集成 的MPPT电路极大地降低了设计复杂 性。正如前面提到的那样, 该电路驱 动LTM8062, 自动将电池充电电流减 小或增大到2A,以从太阳能电池提供 最大输出功率。在最基本的应用中, LTM8062都仅需要3个外部组件就可正 常工作,相比之下,传统的分立式解决

组件。

到了用户可调的 时间限度以后,或充 电电流下降至最低门 限(200mA)以后,充

方案则需要15~30个


电过程终止,电池电压随温度变化的准确度为1.5%。两个集电极开路状态指示信号CHRG和FAULT适用于LED, 以提供视觉提示。当该器件给电池充电时,发出 CHRG 指示信号。如果电池 在固定时间限度内没有以启动充电来回应,或者当使用可选NTC热敏电阻输入引脚时发生了过热情况,那么就发出 FAULT指示信号。

如果电池电压降至低于设定浮置 电压的2.5%,或已插入新电池,那 LTM8062会自动给电池再充电。当太 阳能电池板的电压在夜间急剧下降时, 内部隔离二极管用来防止从电池回到 电源的反向电流。就更大的充电电流 而言,多个LTM8062的输出可以并联 到一起。采用这种联接方法时,这些 LTM8062模块可以共享单对反馈电阻 器,如图3所示。3个LTM8062模块并 联,在恒定电流充电状态下,可实现 6A±7.5%的最大充电电流。充电终止 电压设定在8.4V。

Solec International公司的S-70C 是一款单晶太阳能电池板,额定峰值输 出功率为70W。根据各种照明条件下的 测试结果确定,最大功率电压为13V, 尽管标签上标明V_{MPP}数值为17V。不 过,该产品仍然显示了太阳能电池板的 典型性能特性。在进行所有测量时,该 太阳能电池板都与地平行放置,以模仿 平坦的屋顶。

因为在真实应用中,电池的最初充 电状态随系统使用情况、电池尺寸、之 前几天的天气情况以及其他因素的不同

专题特写:节能

图4 启用和停用 MPPT 时的充电电流和功率

而有很大变化,所以用一个电子负载来 模拟在恒定电流和恒定电压充电区之间 过渡时,从太阳能电池板抽取的最大功 率的近似值。通过要求两个电路处于这 一工作点,我们可以肯定,该电路能否 支持充电周期中的其他所有事件。在对 应于两节锂离子电池组的8.4V充电终 止电压情况下,要求该电子负载用3个 并联LTM8062充电器模块拉高到6A, 同时保持约为8V的电压。

最大峰值功率跟踪的有效性

夏天的某一天,在凌力尔特位于 美国加利福尼亚洲米尔皮塔斯总部的室 外园区,当MPPT电路启用和停用时, 我们进行了一整天的测量。对旧金山夏 天的气候很熟悉的人都知道,早上灰蒙 蒙的天气,经常到午后就变得晴空万里 了。这也是我们在7月的一天进行实验 时的情况。测量在正常工作时间进行, 但实际应用将有可能在数据采集的前后 提供几小时的额外光照。图4示出了输 送至电子负载(模仿我们的8.4V锂离子 电池)的有效负载电流和功率。这一整 天都处于接近最大吸取功率以及晴朗的 天气条件下(特别注明的地方除外)。

当MPPT电路工作时,输送至模拟 电池的电流及功率明显高于该电路不工 作时的水平。除了中午那段时间达到 LTM8062内部最大充电电流限制的情况 以外(MPPT启用),如图4所示提供给负 载的电流增大了20%~40%。如果将电池 充电器和负载与电路分开一会儿。那么 MPPT电路启用时,从太阳能电池板抽 取的功率比该电路停用时多18%~42%。 总之,更显着的改进往往发生在早上和 晚上光照较弱的时候。在这9小时中提 供给负载的额外能量在最大峰值功率电 路停用时约为240W · hr,而MPPT电路 启用时约为300W · hr(见图5),提高了 25%。据此,一个100W的太阳能电池板 系统在负载端的MPPT启用时,与一个 125W太阳能电池板系统在MPPT停用时 所产生的功率相同。以太阳能电池板的 市场价格为每瓦1~2.54欧元计算,可 能节省的费用等于25~63.5欧元。

可靠的高能效照明

由于最大输出功率现在可以高 效率地存储在电池中,所以今天最可 靠和最高效率地提供夜间照明的方式 是采用LED。旧金山市新引入了采用 LED的公交站消耗74.4W功率,相比 之下,之前的荧光灯照明公交站消耗

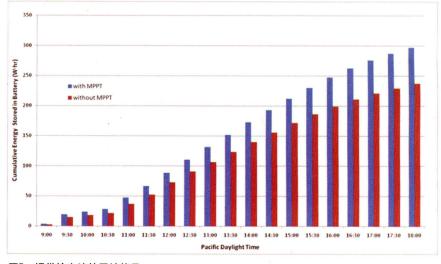
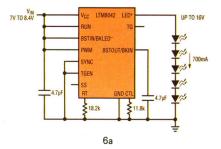



图5 提供给电池的累计能量

专题特写:节能

336W功率。拥有成本也降低了,因 为LED可持续使用的时间是荧光灯的 10倍。此外,LED要求用DC电源工 作,非常适合于用太阳能电池板及电 池提供的DC电源。荧光灯要求用范 围一般在200V~1500kV的AC电压工 作,当用DC电源工作时,需要昂贵和 复杂的驱动器。另外,荧光灯泡所需 的较高电压AC电源还会变成潜在无 线通信的一个干扰源,下一节将对此 加以阐述。LTM8042恒定电流LED驱 动器在效率、可靠性和便利性方面与 LTM8062非常相似,为满足照明需求 提供了一个有价值的解决方案。

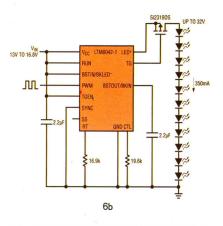


图6a和6b采用升压型配置的LTM8042和 LTM8042-1

无论需要升压、降压或降压-升压 型工作模式,LTM8042和LTM8042-1 都可以非常容易地配置为分别提供高

达1A和350mA的恒定电流。在这个 实验中,模拟的8.4V锂离子电池组 会在约7V时提供其大部分能量,从而 在采用Cree公司的中性白光XLAMP XM-L LED时, 允许LTM8042支持一 个高达16V的700mA LED串,以提供 1300lx的光通量。采用同一个电池组, LTM8042-1能以高达350mA驱动一个 24V的LED串,从而在采用Lumileds公 司的中性白光Luxeon Rebel ES LED 时,提供10401x的光通量。如果两个 太阳能电池板串联叠置, 以将VMPP 提高到26V,而且电池组电压提高 到16.8V, 那么在 350m A时, 采用 Xlamp XM-L LED可实现高达2880 流明的光通量, 而采用Luxeon Rebel ES可实现14301x的光通量。LTM8042 和LTM8042-1构成了一个在3~30V输 入电压范围工作的完整LED驱动器解 决方案,而且仅需要很少的3个外部组 件。

为了在黄昏和黎明时节省功率, LTM8042支持两种调光方法。采用图 6b所示的PWM输入可实现高达3000:1 的调光比。采用一个电阻器或电压可以 实现模拟调光。开关频率在250kHz~ 2MHz范围内可调,而且可以同步至一 个高达2.5MHz的外部时钟,以适用于 噪声敏感应用。

清晰的通信是关键

不管是Wi-Fi、HSPA、LTE抑或 是其他无线标准,通信系统的功耗都在 日益降低、而服务的区域则在持续扩 大。无线通信是对公共服务基础设施的 一种简易扩充。公共交通站点可将最新 的实时服务信息传递给他们的乘客。售 票处可办理乘客的电子付费。太阳能供 电型传感器开始逐步应用于主要城市的 街道中,可帮助驾驶者找到有空位的停 车地点并由此缓解交通拥塞。在可能没 有传统有线通信基础设施的场合中,如 果系统是脱离电网的,那么向系统及/ 或从系统进行清晰的信息传递(特别是 无线通信)的能力是很关键的。

结论

自助供电的智能城市基础设施 的好处非常多。今天已有的技术使这 种基础设施有可能实现,不过需要优 化以使这种基础设施能投入实用。 LTM8062 微型模块电池充电器具有 MPPT功能,可构成紧凑、便利、可靠 和高效率的解决方案, 使从太阳能电 池板抽取的功率提高多达40%。在一天 中,可以多获取25%的能量,因此以目 前的价格计算,就100W峰值发电量而 言,太阳能电池板的费用有可能节省 25~63.5欧元。面向LED照明和噪声 敏感无线通信的、紧凑和高效率电源 模块采用了紧凑的外形尺寸, 以增强 系统功能。凭借具MPPT的高效率、可 靠和便利的电池充电器,结合先进的 电池存储技术、太阳能电池及高效率 LED, 更多城市甚至偏远环境现在都 可以用经济实惠的解决方案实现自助 供电的智能公共基础设施。

EPC