特刊:模拟及数字 IC

由 LDO 稳压器实现高效率、低电压 转换和单电源运作

低电压降压型稳压和转换可运用 多种方法来实现。开关稳压器能够在宽 电压范围内实现高效运作,但其正常操 作需要使用磁性元件及电容器。另外, 也可以采用充电泵(或开关电容器电压 转换器)来实现较低电压转换,但这种 方案的输出电流能力有限,而且需要外 部电容器以实现运作及稳定性。如今, 新式设计方法和晶圆制造工艺已使低压 差线性稳压器(LDO)能够进入该应用领 域。不过,只是近期才出现了一款可提 供快速瞬态响应、低压差电压、低电压 运作(<0.6V输出)、高输出电流能力和 单电源操作的LDO。

目前这一代快速、大流、低压数字 IC(例如,FPGA、CPU和ASIC)对那些 负责给内核及I/O通道供电的电源提出 了严苛的要求。然而,从功率输送的角 度来看这些数字IC并不可靠。传统上, 人们采用高效开关稳压器来为这些器件 供电,但它们具有潜在的噪声干扰问题 以及瞬态响应和布局方面的局限性。因 此,LDO正作为一种替代方案而逐步被 这些应用以及其他低电压转换系统所接 纳,不过它也存在自身特有的局限性。 然而,由于近期的产品创新和功能提升,这种趋势正在发生改变,而且,最 新面市的新款LDO在性能上所做的折中 非常之少(如果有)。

基本的设计挑战

大量的业界标准线性稳压器采用 单个电压源来执行低压差操作,但无法 实现非常低电压转换(<0.6V输出)。 PMOS LDO能实现此压差并采用单电 源运行,但由于传输晶体管的Vgs特 性而在低输入电压条件下受到限制。 NMOS型器件可提供快速瞬态响应,但 需要使用两个电源以对器件施加偏置。 NPN稳压器能提供很宽的输入和输出 电压范围,但不需要两个电源电压就是 需要较高的压差。相比之下,利用正确 的设计架构,PNP 稳压器能够在采用 单个电源的情况下实现低压差和低电压 转换以及无懈可击的保护功能。

由于工艺技术节点的尺寸持续缩 小,因而要求这些数字 IC 和其他系统 在较低的电压条件下运作。对于很多现 有的输入电压轨来说,较大电流及较低 输出电压运作需要增加线性稳压器中的

凌力尔特公司 Steve Knoth

功耗。功耗的这种增加将转化为热量, 所以,必需采用最先进的封装以尽量降 低稳压器内部的温升,并减少应用中的 热问题。具低压差运作能力的线性稳压 器减少了功率耗散的热考量因素。

对高电源抑制比(PSRR)和低输出 电压噪声的要求是两个额外的难题。具 有高电源抑制比性能的器件可轻松地滤 除和抑制来自输入的噪声,从而产生一 个干净和稳定的输出。此外,对于当今 那些需要考虑噪声敏感性的新式电压轨 而言,在宽带宽范围内具有低输出电压 噪声的器件是有益的。显然,大电流条 件下的低输出电压噪声是一项必不可少 的规格指标。

一款适合低电压转换的新型单电源线性 稳压器

对于新式低电压转换系统来说,拥 有必要规格指标的线性稳压器可能是一 种理想的解决方案,然而,为了使LDO 得以采用,它将需要具备以下特性:

- 单电源操作(以实现易用性)
- 快速瞬态响应时间
- 可在一个很宽的输入/输出电压

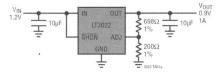
特刊:模拟及数字 IC

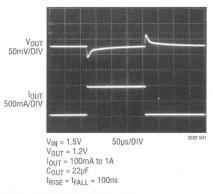
范围内运作

- 高输出电流能力
- 低输出噪声
- 非常低压差操作
- 超卓的热性能
- 高PSRR(在高频条件下)

LT3022 VLDO稳压器

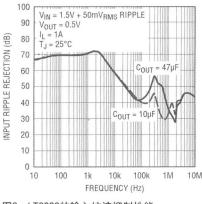
LT3022是一款1A、非常低压差 (VLDO)线性稳压器,具有低至0.9V的 输入电压能力以及低至0.2V的可调输 出电压。LT3022的低V_{IN}能力加之此器 件的低压差(在1A满负载时的典型值为 145mV),使其非常适合于如FPGA、 ASIC、DSP、微处理器和微控制器等 数字 IC中常见的低电压、大电流轨。 它也可应用于一般的高效率、低V_{IN}至 低V_{OUT}转换(例如,1.8~1.5V、1.5 ~1.2V或1.2~0.9V)。此外,该器 件还以仅为400 μ A的静态电流提供低 功率工作模式,停机时静态电流不到 10 μ A,从而延长了电池供电型手持式 应用中的运行时间。




图1 LT3022的典型应用电路——可调输出

LT3022稳压器利用低ESR、电容 值低至10µF的陶瓷输出电容器来优化 稳定性和瞬态响应。LT3022是高度准 确的,在整个电压、负载和温度范围内 具有±3%的输出电压准确度、0.05%的 典型电压调整率和0.05%的典型负载调 整率。该器件无懈可击的内部保护电路 包括电池反向保护、输出反向保护、输 出至输入(电流)反向保护、电流限制和 具迟滞的热限制。

最后, 该器件采用16引脚 3mm×5mm DFN封装和耐热性能增强 型MSOP-16封装,可在-40~+125℃ 的结温范围内工作。


快速瞬态响应和高PSRR

LT3022的设计可在采用多种输出 电容器的情况下保持稳定,但专为低 ESR 陶瓷电容器而优化。输出电容器 的 ESR 会影响稳定性,这种影响在采 用小值电容器时最为显著。应采用一个 最小电容值为10μF且ESR小于0.1Ω的 输出电容器以防止发生振荡。LT3022 是一款低电压器件,而且输出负载瞬态 响应是输出电容的一个函数。较大的输 出电容值可减小峰值偏差,并改善针对 大负载电流变化的瞬态响应。

图2 LT3022的负载瞬态响应

输入PSRR将随诸多因素而变化, 例如,输入和输出电容器的尺寸和类 型、负载电流和电路板布局等等。通 常,CMOS稳压器需要足够的电压储备 空间以驱动传输元件的栅极,否则其环 路增益将受损,进而导致PSRR下降。 PNP型稳压器(如LT3022)的对数V_{BE}特 性意味着当超出压差范围时可提供卓 越的环路增益和PSRR性能指标。如图 3所示,LT3022在整个带宽范围内均提 供了优秀的电源抑制性能。

图3 LT3022的输入纹波抑制性能

大量的保护功能

LT3022具有多项保护功能,从而 使其非常适合在电池供电型电路中使 用。除了与单片式稳压器相关的一般保 护功能(如电流限制和热限制)以外,该 器件还提供了针对输入电压反向、输出 电压反向、以及输入至输出电压反向的 保护功能。

电流限制保护和热过载保护功能 可避免器件遭受其输出端上电流过载 情况的损坏。对于标准操作,不要超 过125℃的结温。典型的热停机温度为 165℃,而且热停机电路具有约7℃的迟 滞。

IN引脚可承受10V的反向电压。 LT3022将电流限制在1µA以下,而且 在输出端上不出现负电压。当电池在插 入时极性接反时,该器件可为自身及负

特刊:模拟及数字 IC

载提供相应的保护。

倘若Vour被拉至地电位以下, LT3022不会遭受损坏。假如V_{IN}被置于 开路状态或接地,则可将Vour拉至地 电位以下达10V。没有电流从与Vour相 连的传输晶体管流出。然而, 电流流入 (但受限于)负责设定输出电压的电阻分 压器。电流从分压器中的底端电阻器以 及ADJ引脚的内部箝位电路经由分压器 中的顶端电阻器流至外部电路,从而将 Vour拉至地电位以下。如果Vin由一个 电压源供电,则Vour将提供与其电流限 制能力相等的电流,而LT3022将利用 热限制功能对自身加以保护。在该场合

中,把/SHDN引脚接地将关断LT3022 并阻止V_{our}供应电流。

在需要采用一个后备电池的电路 中,会出现几种不同的输入/输出情 况。可以在保持输出电压的同时将输入 拉至地电位, 拉至某个中间电压或置于 开路状态。在输入接地的场合中,反向 输出电流小干1 µ A。如果强制LT3022 的IN引脚电压低于OUT引脚或将OUT 引脚电压拉至高于IN引脚,则输入电 流通常将减小至10 µ A以下。这种状况 出现在LT3022输入连接至一个放电(低 电压)电池之时,而由一个后备电池或 第二个稳压器电路负责保持输出。如果 V_{out}被拉至高于V_{IN},则/SHDN引脚的 状态不会影响反向输出电流。

结论

业界的许多LDO虽然实现了快速 瞬态响应和低压差,但传统上需要采用 一种两电源配置以提供低电压操作。然 而,新型电路设计方法及改良型晶圆制 造工艺拓展了PNP型传输晶体管LDO 的性能。LT3022是一款采用单工作电 源的1A VLDO线性稳压器,具有低至 0.9V的输入电压能力和低至0.2V的可 调输出电压、无懈可击的保护功能、快 速瞬态响应以及高PSRR。