

Electronic Engineering Times - China

模拟天地

能量采集

新型压电式器件简化振动能量收集

Tony Armstrong 产品市场总监 电源产品部 凌力尔特公司

许多低功率工业传感器和控制器正 在逐步转而采用可替代能源作为主 要或辅助的供电方式。理想情况下, 这些收集的能量将可免除增设有线 电源或电池的需要。利用现成的物 理能源(例如:温差装置"热电发电 机或热电堆"、机械振动"压电或机 电设备"和光"光伏设备")来产生电 力的换能器正逐渐成为许多应用的 实用电源。众多的无线传感器、远 程监视器和其他低功率应用正逐渐 发展成为近乎"零"功率的器件,而 且只使用收集能量(有些人通常称之 为"毫微功率")。

虽然"能量收集"自2000年初 就已出现,但只是凭借近期的技术 发展才将其推进至商业化阶段。简 而言之,2010年我们处在一个转折 点并将迎来其"成长"阶段。运用能 量收集技术的楼宇自动化传感器应 用已经在欧洲得到推广,这说明其成 长阶段可能已拉开序幕。

能量收集的商业化可行性

尽管能量收集的概念广为人知已有 多年,但在某种实际环境中实现这样 一个系统却十分麻烦、复杂和昂贵。 然而,采用了能量收集方法的市场实 例包括交通运输基础设施、无线医疗 设备、轮胎压力检测,而迄今为止最 大的市场便是楼宇自动化。就楼宇自 动化而言,诸如占有传感器、温度自 动调节器和光开关等系统能够免除 通常所需的电源或控制线路,取而代 之的是一个机械或能量收集系统。

同样,运用能量采集技术的无 线网络能将建筑物内的传感器连接 起来,以在无人值守情况下通过切 断非紧要区域的供电降低采暖、通 风和空调及照明成本。此外,能量收 集电子线路的成本常常低于电源线 路的运行成本,因此,选用收集电能

图1: 典型能量采集系统的四个主要模块。

技术显然能够带来经济上的收益。

典型的能量收集配置或系统 (见图1)通常包括一种免费能源,例 如:连接在某个振动机械源(如空调 管道或窗玻璃)上的压电换能器。这 些小型压电器件能够将很小的振动 或应变差转换为电能。该电能随后 可由一个能量收集电路进行转换并 被变更为一种可用的形式,用于给下 游电路供电。这些下游电子线路通 常包括某种类型的传感器、模数转 换器和一个超低功率微控制器。上 述组件可以获取该收集能量(以电流 的形式存在)并唤醒一个传感器,以 获得一个读数或测量结果,然后使 该数据可通过一个超低功率无线收 发器(由图1所示电路链中的第四个 模块来表示)进行传输。

该链路中的每个电路系统模块 (能源本身或许除外)都特有一组迄今 为止有损于其商业可行性的约束条 件。低成本和低功率传感器及微控 制器面市已有几年的时间;然而,超 低功率收发器只是到最近才刚刚实 现了商用化。不过,该链路中处于落 后状态的则一直是能量收集器。

现有的电源管理器模块实现方 案往往采用低性能的分立型结构,通 常包括30个或更多的组件。此类设计 具有低转换效率和高静态电流。这两 个不足之处均导致了终端系统中的性 能损失。低转换效率将增加系统上电 所需的时间,这反过来又延长了从获 取一个传感器读数至传输该数据的 时间间隔。高静态电流则对能量收集 电源能够低到何种程度有所限制,因 为它首先必须超越其自身操作所需 的电流水平,然后才能将任何多余的 功率提供给输出。

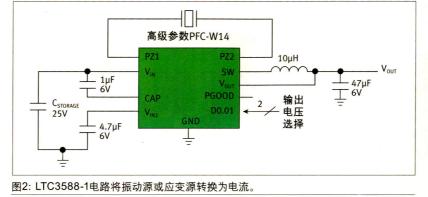
新型压电式能量收集器

迄今为止,人们所缺少的一直是能 收集和管理来自振动源或应变源的 压电能量、并具有低损耗全波桥式 整流器的高集成度、高效率DC/DC 降压型转换器。近期,凌力尔特推出 的新型LTC3588-1压电式能量收集 电源极大地简化了从这类能源收集 剩余能量的工作。

下接32页 »

Electronic Engineering Times - China

模拟天地


新型压电式器件简化振动能量收集

» 上接25页

图2中示出的电路采用了一个 小型压电换能器,用于将机械振动 转换为一个AC电压电源,以馈入 LTC3588-1的内部桥式整流器。它能 够收集小的振动能源并生成系统电 源,而没有使用传统的电池电源。

LTC3588-1是一款超低静态电 流电源,专为能量收集和/或低电流 降压应用而设计。该器件可直接连 接至一个压电电源或AC电源,对电 压波形进行校正并将收集的能量存 储在一个外部电容器上,通过一个 内部并联稳压器泄放任何多余的功 率并借助一个毫微功率高效降压型 稳压器来保持一个已调输出电压。

LTC3588-1的内部全波桥式整 流器可通过两个差分输入来使用, 即负责对AC输入进行整流的PZ1和 PZ2。该整流输出随后被存储在位于 VIN引脚上的一个电容器上,并可用

作降压型转换器的能量储存器。低 损耗桥式整流器具有一个约400mV 的总压降和典型压电生成电流(一般 在10μA左右)。该电桥能够传输高达 50mA的电流。当VIN引脚上拥有足 够的电压时,降压型转换器将被使 能以产生一个稳压输出。

降压型稳压器采用了一种迟滞 电压算法,以通过来自VOUT检测 引脚的内部反馈对输出加以控制。 降压型转换器通过一个电感器将 一个输出电容器充电至一个略高于 调节点的数值。它通过利用一个内 部PMOS开关使电感器电流斜坡上 升至260mA、并随后利用一个内部 NMOS开关使电感器电流斜坡下降 至零以完成该任务,从而有效地将 能量输送至输出电容器。其提供稳 压输出的迟滞方法降低了因FET开 关操作所引起的损耗,并在轻负载 条件下保持了一个输出。降压型转 换器在其执行开关操作时提供了一 个最小100mA的平均负载电流。

本文小结

由于拥有模拟开关模式电源设计专 长的人员在全球都处于短缺状态, 因此要想设计出如图1所示的高效 能量收集系统一直是很困难的事。 不过,随着具集成低损耗全波桥 式整流器的压电式能量收集电源 LTC3588-1的推出,这种状况即将发 生改变。这款革命性器件能从几乎 所有的机械振动源或应变源汲取能 量。此外,凭借其全面的功能组合以 及设计的简易性,该器件还极大地 简化了能量收集链中难以完成的功 率转换设计。对于系统设计师而言这 是个好消息,因为这些"有效振动" 可用于为其能量收集系统供电,而无 须去应付传统的配置难题。